欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (04): 608-619.doi: 10.3724/SP.J.1006.2017.00608

• 研究简报 • 上一篇    下一篇

玉米籽粒早期发育相关蛋白的差异表达特性

于涛1,**,李耕1,**,张成芬2,刘鹏1,*,董树亭1,*,张吉旺1,赵斌1   

  1. 1 作物生物学国家重点实验室/山东农业大学农学院, 山东泰安 271018;2 淄博市周村职业中等专业学校, 山东淄博 255300
  • 收稿日期:2016-11-01 修回日期:2017-01-21 出版日期:2017-04-12 网络出版日期:2017-02-17
  • 通讯作者: 刘鹏,E-mail: liupengsdau@126.com;董树亭,E-mail: stdong@sdau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31371576, 31401339), 国家重点研发计划项目(2016YFD0300106,2016YFD0300205), 国家公益性行业(农业)科研专项(201203100, 201203096, 201503130),国家现代农业产业技术体系建设专项(CARS-02-20), 山东省现代农业产业技术体系建设项目(SDAIT-02-08), 山东省高等学校科技计划项目(J14LF10), 山东省农业重大应用技术创新课题和山东省玉米育种与栽培技术企业重点实验室资助。

Differential Expression Characteristics of Proteins Involved in Early Development of Maize Grain

YU Tao1,**,LI Geng1,**,ZHANG Cheng-Fen2,LIU Peng1,*,DONG Shu-Ting1,*,ZHANG Ji-Wang1,ZHAO Bin1   

  1. 1 Agronomy College of Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China; 2 Zibo Zhoucun Vocational Secondary Specialized School, Zibo 255300, China
  • Received:2016-11-01 Revised:2017-01-21 Published:2017-04-12 Published online:2017-02-17
  • Contact: liu na,E-mail: liupengsdau@126.com;dong shuting,E-mail: stdong@sdau.edu.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31371576, 31401339), the National Key Research and Development Program of China (2016YFD0300106, 2016YFD0300205), the China National Public Welfare Industry (Agriculture) Plan (201203100, 201203096, 201503130), the National Modern Agricultural Technology & Industry System (CARS-02-20), the Shandong Modern Agricultural Technology & Industry System (SDAIT-02-08), the Colleges and Universities of Shandong Province Science and Technology Plan Projects (J14LF10), the Agriculture Technology Innovation Project of Shandong Province and Shandong Provincial Key Laboratory of Corn Breeding and Cultivation Technology.

摘要:

玉米籽粒发育早期, 代谢活动旺盛, 细胞分裂与增大活跃, 为后续贮藏物质的合成形成充足库容。为阐明籽粒早期发育的蛋白合成、积累与调控过程, 本研究以夏玉米品种登海661为试验材料, 在开花期人工饱和授粉后第3、第5、第10天取果穗中部籽粒, 利用同位素标记相对定量(iTRAQ)技术分析其蛋白差异表达特性。玉米籽粒早期发育阶段总计鉴定及定量2639种蛋白, 这些蛋白涉及多种生物过程与分子功能, 其中代谢过程和分子过程是最主要的2个生物过程;催化活性和绑定功能是最主要的两个分子功能, 这些生物过程与分子功能对籽粒早期发育具有重要作用。定量分析结果表明137种蛋白在籽粒发育早期显著差异表达, 其功能涉及蛋白代谢、胁迫响应、细胞生长与分裂、碳水化合物与能量代谢、转运、次生物质代谢、淀粉合成、转录、油脂代谢、信号转导、氨基酸代谢等。其中, 表达差异较大的是与蛋白代谢、胁迫响应、细胞生长与分裂以及碳水化合物与能量代谢相关的蛋白。表达模式聚类结果显示这些不同功能类别的蛋白协同表达, 共同调控玉米籽粒的早期发育。

关键词: 玉米, 籽粒早期发育, iTRAQ, 蛋白质组学, 蛋白功能

Abstract:

During early stage of maize grain development, the metabolic activity is strong and the cell division and enlargement processes are also active, leading to increase the grain sink size for subsequent accumulation of storage material. To explore the protein synthesis, accumulation and regulation during early maize grain development, grains of maize cultivar Denghai 661 in the middle of ear were harvested at 3, 5, and 10 days after flowering artificial saturation pollination, respectively, and analyzed by isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. A total of 2639 proteins were identified and quantified in maize grain during early stages of development, showing that these proteins were involved in diverse biological processes and molecular functions, of which the metabolic process and molecular processes were the two most important biological processes, and the catalytic activity and binding were the two most important molecular functions, all of them played important roles in maize grain development. Quantitative analysis showed that 137 proteins significantly differentially expressed during early maize grain development, and these proteins were involved in protein metabolism, stress response, cell growth and division, carbohydrate and energy metabolism, transport, secondary metabolism, starch synthesis, transcription, lipid metabolism, signal transduction and amino acid metabolism. Among them, the proteins expressed more differentially were related to protein metabolism, stress response, cell growth and division, carbohydrate and energy metabolism. Expression pattern clustering analysis showed that these proteins in different functional categories expressed synergically to regulate the early development of maize grain.

Key words: Maize, Grain early development, iTRAQ, Proteomics, Protein function

[1]Sabelli P A, Larkins B A. The development of endosperm in grasses. Plant Physiol, 2009, 149: 14–26 [2]旷仁平, 姜孝成, 刘姜瑾, 张春来, Adrian S. 胚乳的发育及其调控. 植物生理学报, 2006, 42: 182–190 Kuang R P, Jiang X C, Liu J J, Zhang C L, Adrian S. Endosperm development and its regulation. J Plant Physiol, 2006, 42: 182–190 (in Chinese with English abstract) [3]左振朋, 王婧, 董鲁浩, 马登超, 孙庆泉, 董树亭. 不同品质类型玉米籽粒充实期的胚乳细胞增殖与生理活性比较. 作物学报, 2010, 36: 848–855 Zuo Z P, Wang J, Dong L H, Ma D C, Sun Q Q, Dong S T. Comparison of multiplication of endosperm cell and physiological activity in developing kernels among normal corn, glutinous corn, and pop corn. Acta Agron Sin, 2010, 36: 848–855 (in Chinese with English abstract) [4]赵久然, 陈国平. 不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察. 中国农业科学, 1990, 23(4): 28–34 Zhao J R, Chen G P. Effect of shading treatment at different stages of plant development on grain production of corn (Zea mays L.) and observations of tip kernel abortion. Sci Agric Sin, 1990, 23(4): 28–34 (in Chinese with English abstract) [5]孟佳佳, 董树亭, 石德杨, 张海燕. 玉米雌穗分化与籽粒发育及败育的关系. 作物学报, 2013, 39: 912–918 Meng J J, Dong S T, Shi D Y, Zhang H Y. Relationship of ear differentiation with kernel development and barrenness in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 912–918 (in Chinese with English abstract) [6]Li G S, Wang D F, Yang R L, Logan K, Chen H, Zhang S S, Skaggs M I, Lloyd A, Burnett W J, Laurie J D, Hunter B G, Dannenhoffer J M, Larkins B A, Drews G N, Wang X F, Yadegari R. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc Natl Acad Sci USA, 2014, 111: 7582–7587 [7]Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014, 166: 252–264 [8]Hajduch M, Hearne L B, Miernyk J A, Casteel J E, Joshi T, Agrawal G K. Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol, 2010, 152: 2078–2087 [9]Nadaud I, Girousse C, Debiton C, Chambon C, Bouzidi M F, Martre P. Proteomic and morphological analysis of early stages of wheat grain development. Proteomics, 2010, 10: 2901–2910 [10]Méchin V, Balliau T, Chateau-Joubert S, Davanture M, Langella O, Négroni L. A two-dimensional proteome map of maize endosperm. Phytochemistry, 2004, 65: 1609–1618 [11]Jin X, Fu Z, Ding D, Li W, Liu Z, Tang J. Proteomic identification of genes associated with maize grain-filling rate. Plos One, 2013, 8: e59353 [12]Huang H, M?ller I M, Song S Q. Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics, 2011, 75: 1247–1262 [13]吴林坤, 陈军, 吴红淼, 王娟英, 秦贤金, 张重义, 林文雄. 地黄连作胁迫响应机制的块根蛋白质组学分析. 作物学报, 2016, 42: 243–254 Wu L K, Chen J, Wu H M, Wang J Y, Qin X J, Zhang Z Y, Lin W X. Comparative proteomics analysis of R. glutinosa tuber root in response to consecutive monoculture. Acta Agron Sin, 2016, 42: 243–254 (in Chinese with English abstract) [14]韩平安, 逯晓萍, 米福贵, 张瑞霞, 李美娜, 薛春雷, 董婧, 丛梦露. 基于蛋白质组学的高丹草苗期杂种优势分析. 作物学报, 2016, 42: 696–705 Han P A, Lu X P, Mi F G, Zhang R X, Li M N, Xue C L, Dong J, Cong M L. Analysis of heterosis in sorghum-sudan grass hybrid seedlings based on proteomics. Acta Agron Sin, 2016, 42: 696–705 (in Chinese with English abstract) [15]于涛, 李耕, 刘鹏, 董树亭, 张吉旺, 赵斌, 柏晗. 玉米早期发育阶段粒位效应的蛋白质组学分析. 中国农业科学, 2016, 49: 54–68 Yu T, Li G, Liu P, Dong S T, Zhang J W, Zhao B, Bai H. Proteomics analysis of grain position effects during early developmental stages of maize. Sci Agric Sin, 2016, 49: 54–68 (in Chinese with English abstract) [16]Lilley K S, Razzaq A, Dupree P. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol, 2002, 6: 46–50 [17]Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X, Wang Z, Yan Y. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics, 2014, 15: 1–20 [18]Wasteneys G O, Yang Z. New views on the plant cytoskeleton. Plant Physiol, 2004, 136: 3884–3891 [19]孙庆泉, 吴元奇, 胡昌浩, 董树亭, 荣廷昭, 张颖. 不同产量潜力玉米籽粒胚乳细胞增殖与籽粒充实期的生理活性. 作物学报, 2005, 31: 612–618 Sun Q Q, Wu Y Q, Hu C H, Dong S T, Rong T Z, Zhang G Y. Physiological activities and multiplication of endosperm cell at filling stage of kernels with different yield potential in maize. Acta Agron Sin, 2005, 31: 612–618 (in Chinese with English abstract) [20]徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452–1461 Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013, 39: 1452–1461 (in Chinese with English abstract) [21]Miernyk J A. Seed proteomics. J Proteomics, 2011, 74: 389–400 [22]Schippers J H M, Mueller-Roeber B. Ribosomal composition and control of leaf development. Plant Sci, 2010, 179: 307–315 [23]Lee J, Koh H J. A label-free quantitative shotgun proteomics analysis of rice grain development. Proteome Sci, 2011, 9: 1–10 [24]Zhang Z Y, Li J H, Liu H H, Chong K, Xu Y Y. Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses. Environ Exp Bot, 2015, 114: 92–103 [25]Gutierrez-Marcos J F, Costa L M, Evans M M S. Maternal gametophytic baseless1 is required for development of the central cell and early endosperm patterning in maize (Zea mays). Genetics, 2006, 174: 317–329 [26]Gutierrez L, VanW O, Castelain M, Bellini C. Combined networks regulating seed maturation. Trends Plant Sci, 2007, 12: 294–300 [27]Kruger N J, Schaewen A V. The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol, 2003, 6: 236–246 [28]张海艳. 玉米胚乳细胞淀粉质体的发育和增殖方式. 玉米科学, 2009, 17: 58–60 Zhang H Y. Amyloplast development and proliferation in maize starch endosperm cell. J Maize Sci, 2009, 17: 58–60 (in Chinese with English abstract) [29]Rolletschek H, Koch K, Wobus U, Borisjuk L. Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo. Plant J, 2005, 42: 69–83 [30]Liu H, Chen W. Comparative proteomic analysis of longan (Dimocarpus longan lour.) seed abortion. Planta, 2010, 231: 847–860 [31]Mittler R, Vanderauwera S, Gollery M, Breusegem F V. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9: 490–498 [32]Kolomiets M V, Hannapel D J, Chen H, Tymeson M, Gladon R J. Lipoxygenase is involved in the control of potato tuber development. Plant Cell, 2001, 13: 613–626 [33]宫长荣, 李艳梅, 杨立均. 水分胁迫下离体烟叶中脂氧合酶活性、水杨酸与茉莉酸积累的关系. 中国农业科学, 2003, 36: 269–272 Gong C R, Li Y M, Yang L J. Relationship between LOX activity and SA and JA accumulations in tobacco leave under water stress. Sci Agric Sin, 2003, 36: 269–272 (in Chinese with English abstract) [34]Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci, 2004, 29: 243–249 [35]Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J Integr Plant Biol, 2011, 53: 388–398

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!