作物学报 ›› 2017, Vol. 43 ›› Issue (04): 608-619.doi: 10.3724/SP.J.1006.2017.00608
于涛1,**,李耕1,**,张成芬2,刘鹏1,*,董树亭1,*,张吉旺1,赵斌1
YU Tao1,**,LI Geng1,**,ZHANG Cheng-Fen2,LIU Peng1,*,DONG Shu-Ting1,*,ZHANG Ji-Wang1,ZHAO Bin1
摘要:
玉米籽粒发育早期, 代谢活动旺盛, 细胞分裂与增大活跃, 为后续贮藏物质的合成形成充足库容。为阐明籽粒早期发育的蛋白合成、积累与调控过程, 本研究以夏玉米品种登海661为试验材料, 在开花期人工饱和授粉后第3、第5、第10天取果穗中部籽粒, 利用同位素标记相对定量(iTRAQ)技术分析其蛋白差异表达特性。玉米籽粒早期发育阶段总计鉴定及定量2639种蛋白, 这些蛋白涉及多种生物过程与分子功能, 其中代谢过程和分子过程是最主要的2个生物过程;催化活性和绑定功能是最主要的两个分子功能, 这些生物过程与分子功能对籽粒早期发育具有重要作用。定量分析结果表明137种蛋白在籽粒发育早期显著差异表达, 其功能涉及蛋白代谢、胁迫响应、细胞生长与分裂、碳水化合物与能量代谢、转运、次生物质代谢、淀粉合成、转录、油脂代谢、信号转导、氨基酸代谢等。其中, 表达差异较大的是与蛋白代谢、胁迫响应、细胞生长与分裂以及碳水化合物与能量代谢相关的蛋白。表达模式聚类结果显示这些不同功能类别的蛋白协同表达, 共同调控玉米籽粒的早期发育。
[1]Sabelli P A, Larkins B A. The development of endosperm in grasses. Plant Physiol, 2009, 149: 14–26 [2]旷仁平, 姜孝成, 刘姜瑾, 张春来, Adrian S. 胚乳的发育及其调控. 植物生理学报, 2006, 42: 182–190 Kuang R P, Jiang X C, Liu J J, Zhang C L, Adrian S. Endosperm development and its regulation. J Plant Physiol, 2006, 42: 182–190 (in Chinese with English abstract) [3]左振朋, 王婧, 董鲁浩, 马登超, 孙庆泉, 董树亭. 不同品质类型玉米籽粒充实期的胚乳细胞增殖与生理活性比较. 作物学报, 2010, 36: 848–855 Zuo Z P, Wang J, Dong L H, Ma D C, Sun Q Q, Dong S T. Comparison of multiplication of endosperm cell and physiological activity in developing kernels among normal corn, glutinous corn, and pop corn. Acta Agron Sin, 2010, 36: 848–855 (in Chinese with English abstract) [4]赵久然, 陈国平. 不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察. 中国农业科学, 1990, 23(4): 28–34 Zhao J R, Chen G P. Effect of shading treatment at different stages of plant development on grain production of corn (Zea mays L.) and observations of tip kernel abortion. Sci Agric Sin, 1990, 23(4): 28–34 (in Chinese with English abstract) [5]孟佳佳, 董树亭, 石德杨, 张海燕. 玉米雌穗分化与籽粒发育及败育的关系. 作物学报, 2013, 39: 912–918 Meng J J, Dong S T, Shi D Y, Zhang H Y. Relationship of ear differentiation with kernel development and barrenness in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 912–918 (in Chinese with English abstract) [6]Li G S, Wang D F, Yang R L, Logan K, Chen H, Zhang S S, Skaggs M I, Lloyd A, Burnett W J, Laurie J D, Hunter B G, Dannenhoffer J M, Larkins B A, Drews G N, Wang X F, Yadegari R. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc Natl Acad Sci USA, 2014, 111: 7582–7587 [7]Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014, 166: 252–264 [8]Hajduch M, Hearne L B, Miernyk J A, Casteel J E, Joshi T, Agrawal G K. Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol, 2010, 152: 2078–2087 [9]Nadaud I, Girousse C, Debiton C, Chambon C, Bouzidi M F, Martre P. Proteomic and morphological analysis of early stages of wheat grain development. Proteomics, 2010, 10: 2901–2910 [10]Méchin V, Balliau T, Chateau-Joubert S, Davanture M, Langella O, Négroni L. A two-dimensional proteome map of maize endosperm. Phytochemistry, 2004, 65: 1609–1618 [11]Jin X, Fu Z, Ding D, Li W, Liu Z, Tang J. Proteomic identification of genes associated with maize grain-filling rate. Plos One, 2013, 8: e59353 [12]Huang H, M?ller I M, Song S Q. Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics, 2011, 75: 1247–1262 [13]吴林坤, 陈军, 吴红淼, 王娟英, 秦贤金, 张重义, 林文雄. 地黄连作胁迫响应机制的块根蛋白质组学分析. 作物学报, 2016, 42: 243–254 Wu L K, Chen J, Wu H M, Wang J Y, Qin X J, Zhang Z Y, Lin W X. Comparative proteomics analysis of R. glutinosa tuber root in response to consecutive monoculture. Acta Agron Sin, 2016, 42: 243–254 (in Chinese with English abstract) [14]韩平安, 逯晓萍, 米福贵, 张瑞霞, 李美娜, 薛春雷, 董婧, 丛梦露. 基于蛋白质组学的高丹草苗期杂种优势分析. 作物学报, 2016, 42: 696–705 Han P A, Lu X P, Mi F G, Zhang R X, Li M N, Xue C L, Dong J, Cong M L. Analysis of heterosis in sorghum-sudan grass hybrid seedlings based on proteomics. Acta Agron Sin, 2016, 42: 696–705 (in Chinese with English abstract) [15]于涛, 李耕, 刘鹏, 董树亭, 张吉旺, 赵斌, 柏晗. 玉米早期发育阶段粒位效应的蛋白质组学分析. 中国农业科学, 2016, 49: 54–68 Yu T, Li G, Liu P, Dong S T, Zhang J W, Zhao B, Bai H. Proteomics analysis of grain position effects during early developmental stages of maize. Sci Agric Sin, 2016, 49: 54–68 (in Chinese with English abstract) [16]Lilley K S, Razzaq A, Dupree P. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol, 2002, 6: 46–50 [17]Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X, Wang Z, Yan Y. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics, 2014, 15: 1–20 [18]Wasteneys G O, Yang Z. New views on the plant cytoskeleton. Plant Physiol, 2004, 136: 3884–3891 [19]孙庆泉, 吴元奇, 胡昌浩, 董树亭, 荣廷昭, 张颖. 不同产量潜力玉米籽粒胚乳细胞增殖与籽粒充实期的生理活性. 作物学报, 2005, 31: 612–618 Sun Q Q, Wu Y Q, Hu C H, Dong S T, Rong T Z, Zhang G Y. Physiological activities and multiplication of endosperm cell at filling stage of kernels with different yield potential in maize. Acta Agron Sin, 2005, 31: 612–618 (in Chinese with English abstract) [20]徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452–1461 Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013, 39: 1452–1461 (in Chinese with English abstract) [21]Miernyk J A. Seed proteomics. J Proteomics, 2011, 74: 389–400 [22]Schippers J H M, Mueller-Roeber B. Ribosomal composition and control of leaf development. Plant Sci, 2010, 179: 307–315 [23]Lee J, Koh H J. A label-free quantitative shotgun proteomics analysis of rice grain development. Proteome Sci, 2011, 9: 1–10 [24]Zhang Z Y, Li J H, Liu H H, Chong K, Xu Y Y. Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses. Environ Exp Bot, 2015, 114: 92–103 [25]Gutierrez-Marcos J F, Costa L M, Evans M M S. Maternal gametophytic baseless1 is required for development of the central cell and early endosperm patterning in maize (Zea mays). Genetics, 2006, 174: 317–329 [26]Gutierrez L, VanW O, Castelain M, Bellini C. Combined networks regulating seed maturation. Trends Plant Sci, 2007, 12: 294–300 [27]Kruger N J, Schaewen A V. The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol, 2003, 6: 236–246 [28]张海艳. 玉米胚乳细胞淀粉质体的发育和增殖方式. 玉米科学, 2009, 17: 58–60 Zhang H Y. Amyloplast development and proliferation in maize starch endosperm cell. J Maize Sci, 2009, 17: 58–60 (in Chinese with English abstract) [29]Rolletschek H, Koch K, Wobus U, Borisjuk L. Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo. Plant J, 2005, 42: 69–83 [30]Liu H, Chen W. Comparative proteomic analysis of longan (Dimocarpus longan lour.) seed abortion. Planta, 2010, 231: 847–860 [31]Mittler R, Vanderauwera S, Gollery M, Breusegem F V. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9: 490–498 [32]Kolomiets M V, Hannapel D J, Chen H, Tymeson M, Gladon R J. Lipoxygenase is involved in the control of potato tuber development. Plant Cell, 2001, 13: 613–626 [33]宫长荣, 李艳梅, 杨立均. 水分胁迫下离体烟叶中脂氧合酶活性、水杨酸与茉莉酸积累的关系. 中国农业科学, 2003, 36: 269–272 Gong C R, Li Y M, Yang L J. Relationship between LOX activity and SA and JA accumulations in tobacco leave under water stress. Sci Agric Sin, 2003, 36: 269–272 (in Chinese with English abstract) [34]Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci, 2004, 29: 243–249 [35]Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J Integr Plant Biol, 2011, 53: 388–398 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|