欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (05): 754-762.doi: 10.3724/SP.J.1006.2017.00754

• 耕作栽培·生理生化 • 上一篇    下一篇

根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响

王一帆,秦亚洲,冯福学,赵财,于爱忠,刘畅,柴强*   

  1. 甘肃省干旱生境作物学重点实验室 / 甘肃农业大学农学院,甘肃兰州 730070
  • 收稿日期:2016-06-03 修回日期:2017-03-01 出版日期:2017-05-12 网络出版日期:2017-03-07
  • 通讯作者: 柴强,E-mail: chaiq@gsau.edu.cn
  • 基金资助:

    本研究由?国家自然科学基金项目(31360323)和国家科技支撑计划项目(2012BAD14B10)资助。

Synergistic Effect of Root Interaction and Density on Yield and Yield Components of Wheat/Maize Intercropping System

WANG Yi-Fan,QIN Ya-Zhou,FENG Fu-Xue,ZHAO Cai,YU Ai-Zhong,LIU Chang,CHAI Qiang*   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Science / Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2016-06-03 Revised:2017-03-01 Published:2017-05-12 Published online:2017-03-07
  • Contact: Chai Qiang,E-mail: chaiq@gsau.edu.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31360323) and the National Key Technology R&D Program of China (2012 BAD14B10).

摘要:

密植是间作模式下重要的增产增效技术措施,本研究旨在探讨间作适应密植的产量构成响应机制。2014—2015年连续两年在河西绿洲灌区进行田间试验,设计不隔根、尼龙网隔根(阻断根系交叉,仅有水分养分的交流)和塑料布隔根(完全阻断)3种根间作用方式,及2个玉米种植密度(9万株 hm-2和10.5万株 hm-2),测定地上、地下部互作对小麦间作玉米产量及产量构成因素的影响。与单作相比,地上、地下部完全作用时间作优势提高48.3%,密度增加使其间作优势增加9.7%,地下部互作对间作优势的贡献率为21.0%,增加密度使其贡献率提高5.0%,根系交叉叠加对间作优势产生的补偿效应为9.0%,地下部水养分交流互补效应为11.1%。地上、地下部完全互作下混合籽粒产量相对于单作增幅最大,高、低密度下增幅分别达58.8%~62.2%和36.1%~36.8%;间作中地下部分对小麦组分籽粒产量的贡献率为26.5%~31.5%,其中根系穿叉产生的补偿效应为12.9%~13.2%,地下部水分养分交流互补效应为12.2%~16.0%;地下互作对玉米组分籽粒产量的贡献率为9.7%~22.6%,增加密度使地下互作贡献率提高7.0%~11.0%;密度提高对不隔根和尼龙网隔根产量的贡献率分别18.1%~23.3%和12.5%~21.5%,说明根间完全作用有利于密度正效应的发挥。地下互作对小麦穗数贡献率为5.5%~11.4%,密度对小麦地下部贡献率影响差异不显著,地下互作对玉米穗数的贡献率为12.5%~16.3%,增加密度使地下互作贡献率增加3.6%~14.1%。通径分析进一步表明,不同根间作用及密植效应下间作小麦、玉米主要通过提高单位面积穗数来提高籽粒产量。本研究表明,增加密度可显著增加间作优势和地下部贡献率,地上地下完全互作有利于密植效应充分发挥,可为进一步发掘密植条件下的间作优势机理提供理论依据。

关键词: 间作, 密度, 根间作用, 产量, 产量构成

Abstract:

As planting density is a key strategy for improvement of yield and efficiencies in intercropping, the present study was conducted to explore the mechanism of yield response to close planting in intercropping systems. The field experiment was carried out in Hexi oasis irrigation area from 2014 to 2015, of which, three root partition patterns, i.e. no root barrier, nylon mesh barrier (obstructs overlapping of wheat roots with maize roots, but allows water and nutrients to exchange through the nylon mesh) and plastic sheet barrier (prevents water and nutrients from exchange between the two intercrops and no overlapping of wheat roots with maize roots), were combined with two planting density levels, i.e., 90 000 plants ha-1 and 105 000 plants ha-1. The main objective was to determine the effect of above- and below-ground interrelation on grain yield and yield components. The results showed that a complete effect of above- and below-ground interaction increased the intercropping-advantage (i.e. LER) by 48.3% compared to sole cropping. Besides, increase of maize density would led to the LER increased by 9.7%. Generally, the below-ground interaction attributed 21.0% to the LER, and with maize density increased, the contribution rate was increased by 5%. The compensation effect of root overlapping and the complementary of moisture/nutrient exchange attributed 9.0% and 11.1% to the LER, respectively. A complete effect of below- and above-ground interaction also had the highest grain yield, which was increased by 58.8%–62.2% under the higher density and by 36.1%–36.8% under the lower density, compared to the corresponding monocultures. On average, the below-ground interaction attributed 26.5%–31.5% to the grain yield of intercropped wheat, of which, the compensation effect of root overlapping and the complementary of moisture/nutrient exchange attributed 12.9%–13.2% and 12.2–16.0%, respectively. For maize grain yield in the wheat-maize intercropping, the below-ground interaction attributed 9.7%–22.6%, and with maize density increased, the contribution rate was increased by 7.0–11.0%. Increase of maize density increased grain yield by 18.1%–23.3% and 12.5%–21.5% under no root barrier and nylon mesh barrier, this indicated that a complete root interaction could improve the positive effect of close planting. The below-ground interaction attributed 5.5%–11.4% to wheat era number, but not influenced by the density. Similarly, the below-ground interaction attributed 12.5%–16.3% to maize era number, and was further increased by 3.6% to 14.1% with the increase of the density. Based on the result of path analysis, it could conclude that the improvement of grain yield of wheat and maize was mainly attributable to the increase of era number per area. This study showed that increase of planting density could significantly promote the intercropping advantage and the contribution rate of the below-ground interaction. Furthermore, a complete effect of above- and below-ground interaction would facilitate the positive effect of close planting. Accordingly, the results will provide sound theoretical base for the further exploring of the mechanism in intercropping advantage under close planting.

Key words: Intercropping, Planting density, Root interaction, Grain yield, Yield components

[1]柴强, 杨彩红, 黄高宝. 干旱区绿洲不同种植模式作物的耗水特征. 中国沙漠, 2010, 30: 1153–1159 Chai Q, Yang C H, Huang G B. Characteristics of crop water consumption of different cropping patterns in an arid oasis. J Desert Res, 2010, 30: 1153–1159 (in Chinese with English abstract) [2]Stern W R. Nitrogen fixation and transfer in intercrop systems. Field Crops Res, 1993, 34: 335–356 [3]Takim F O. Advantages of maize-cowpea intercropping over sole cropping through competition indices. J Agric Biodiversity Res, 2012, 1: 53–59 [4]Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2002, 248: 305–312 [5]Hauggaard N H, Jensen E S. Facilitative root interactions in intercrops. Plant Soil, 2006, 274: 237–250 [6]黄高宝. 集约栽培条件下间套作的光能利用理论发展及其应用. 作物学报, 1999, 25: 16–24 Huang G B. Development of light utilization theory for wheat/corn intercropping in condition of intensive cultivation. Acta Agron Sin, 1999, 25: 16–24 (in Chinese with English abstract) [7]陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38: 80–85 Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y D, Song H X, Zhao J R. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agron Sin, 2012, 38: 80–85 (in Chinese with English abstract) [8]田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 32: 1699–1705 Tian J C, Deng Z Y, Hu R B, Wang Y C. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 32: 1699–1705 (in Chinese with English abstract) [9]任伟, 赵鑫, 黄收兵, 周楠, 王若男, 陶洪斌, 王璞. 不同密度下增施有机肥对夏玉米物质生产及产量构成的影响. 中国生态农业学报, 2014, 22: 1146–1155 Ren W, Zhao X, Huang S B, Zhou N, Wang R N, Tao H B, Wang P. Effects of application of organic fertilizer under different planting densities on dry matter production and yield formation of summer maize. Chin J Eco-Agric, 2014, 22: 1146–1155 (in Chinese with English abstract) [10]杨艳君, 郭平毅, 曹玉凤, 王宏富, 王玉国, 原向阳. 施肥水平和种植密度对张杂谷5号产量及其构成要素的影响. 作物学报, 2012, 38: 2278–2285 Yang Y J, Guo P Y, Cao Y F, Wang H F, Wang Y G, Yuan X Y. Effects of fertilizer and planting density on yield and yield components in foxtail millet hybrid Zhangzagu 5. Acta Agron Sin, 2012, 38: 2278–2285 (in Chinese with English abstract) [11]宋振伟, 齐华, 张振平, 钱春荣, 郭金瑞, 邓艾兴, 张卫建. 春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异. 作物学报, 2012, 12: 2267–2277 Song Z W, Qi H, Zhang Z P, Qian C R, Guo J R, Deng A X, Zhang W J.Effects of Plant Density on Agronomic Traits and Yield in Spring Maize Zhongdan 909 and Their Regional Differences in Northeast China. Acta Agron Sin, 2012, 12: 2267–2277 (in Chinese with English abstract) [12]马国胜, 薛吉全, 路海东, 张仁和, 邰书静, 任建宏. 播种时期与密度对关中灌区夏玉米群体生理指标的影响. 应用生态学报, 2007, 18: 1247-1253 Ma G S, Xue J Q, Lu H D, Zhang R H, Tai S J, Ren J H. Effects of planting date and density on population physiological indices of summer corn in central Shaanxi irrigation area. J Appl Ecol, 2007, 18: 1247–1253 (in Chinese with English abstract) [13]孔学夫, 冯福学, 柴强. 根系分隔对小麦玉米套作田土壤水分状况的影响. 中国沙漠, 2014, 34: 780–785 Kong X F, Feng F X, Chai Q. The Effect of different root partition patterns on soil water condition of wheat-corn intercropping system. J Desert Res, 2014, 34: 780–785 (in Chinese with English abstract) [14]Temesgen A, Fukai S, Rodriguez D. As the level of crop productivity increases: Is there a role for intercropping in smallholder agriculture. Field Crops Res, 2015, 180: 155–166 [15]刘广才, 杨祁峰, 李隆. 小麦/玉米间作优势及地上部与地下部因素的相对贡献. 植物生态学报, 2008, 32: 477–484 Liu G C, Yang Q F, Li L. Intercropping advantage and contribution of above-and below-ground interactions in wheat-maize intercropping. J Plant Ecol, 2008, 32: 477–484 (in Chinese with English abstract) [16]李隆, 杨思存, 孙建好, 李晓林, 张福锁. 小麦/大豆间作中作物种间的竞争作用和促进作用. 应用生态学报, 1999, 10: 197–200 Li L, Yang S C, Sun J H, Li X L, Zhang F S. Interspecific competition and facilitation in wheat/soybean intercropping system. J Appl Ecol, 1999, 10:197–200 (in Chinese with English abstract) [17]Li L, Yang S, Li X. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant Soil, 1999, 212: 105–114 [18]Rajaniemi T K, Allison V J, Goldberg D E. Root competition can cause a decline in diversity with increased productivity. J Ecol, 2003, 91: 407–416 [19]宋海星, 李生秀. 玉米生长空间对根系吸收特性的影响. 中国农业科学, 2003, 36: 899–904 Song H X, Li S X. Effects of root growth space of on maize its absorbing characteristics. Sci Agric Sin, 2003, 36: 899–904 (in Chinese with English abstract) [20]李玉英, 胡汉升, 程序, 孙建好, 李隆. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31: 1617–1630 Li Y Y, Hu H S, Cheng X, Sun J H, Li L. Effects of interspecific interactions and nitrogen fertilization rates on above-and below-growth in faba bean/maze intercropping system. Acta Ecol Sin, 2011, 31:1617–1630 (in Chinese with English abstract) [21]张恩和, 黄高宝. 间套种植复合群体根系时空分布特征.应用生态学报, 2003, 14: 1301–1304 Zhang E H, Huang G B. Temporal and spatial distribution characteristics of the crop root in intercropping system. J Appl Ecol, 2003, 14: 1301–1304 (in Chinese with English abstract) [22]陈延玲, 吴秋平, 陈晓超, 陈范骏, 张永杰, 李前, 袁力行, 米国华. 不同耐密性玉米品种的根系生长及其对种植密度的响应. 植物营养与肥料学报, 2012, 18: 52–59 Chen Y L, Wu Q P, Chen X C, Chen F J, Zhang Y J, Li Q, Yuan L X, Mi G H. Root growth and its response to increasing planting density in different maize hybrids. Plant Nutr Fert Sci, 2012, 18: 52–59 (in Chinese with English abstract) [23]王树丽, 贺明荣, 代兴龙, 周晓虎. 种植密度对冬小麦根系时空分布和氮素利用效率的影响. 应用生态学报, 2012, 23: 1839–1845 Wang S L, He M R, Dai X L, Zhou X H. Effects of planting density on root spatiotemporal distribution and plant nitrogen use efficiency of winter wheat. J Appl Ecol, 2012, 23: 1839–1845 (in Chinese with English abstract) [24]殷文, 赵财, 于爱忠, 柴强, 胡发龙, 冯福学. 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响. 作物学报, 2015, 41: 633–641 Yin W, Zhao C, Yu A Z, Chai Q, Hu F L, Feng F X. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system. Acta Agron Sin, 2015, 41: 633–641 (in Chinese with English abstract) [25]郝艳如, 劳秀荣, 赵秉强, 孙伟红. 隔根对小麦/玉米间套种植生长特性的影响. 麦类作物学报, 2003, 23(1): 71–74 Hao Y R, Lao X R, Zhao B Q, Sun W H. Effect of separating root method on wheat and corn intercropping system. J Triticeae Crops, 2003, 23(1): 71–74 (in Chinese with English abstract) [26]殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016, 42: 751–757 Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016, 42: 751?757 (in Chinese with English abstract) [27]陈桂平, 于爱忠. 根间作用对玉米间作豌豆耗水特征的影响. 西北农业学报, 2014, 23(12): 68–73 Chen G P, Yu A Z. Response of water use characteristics of maize/pea intercropping to different root partition and irrigation quota. Acta Agric Boreali-Occident Sin, 2014, 23(12): 68–73 (in Chinese with English abstract) [28]杨锦忠, 张洪生, 杜金哲. 玉米产量-密度关系年代演化趋势的Meta分析. 作物学报, 2013, 39: 515–519 Yang J Z, Zhang H S, Du J Z. Meta-analysis of evolution trend from 1950s to 2000s in the relationship between crop yield and plant density in maize. Acta Agron Sin, 2013, 39: 515–519 (in Chinese with English abstract) [29]胡萌, 魏湜, 杨猛. 密度对不同株型玉米光合特性及产量的影响. 玉米科学, 2010, 18: 103–107 Hu M, Wei S, Yang M. Effects of plant density on photosynthetic characters and yield of different plant types corn. Maize Sci, 2010, 18: 103–107 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!