欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (06): 821-828.doi: 10.3724/SP.J.1006.2017.00821

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

四倍体马铃薯熟性连锁SCAR标记的开发与验证

李兴翠,李广存,徐建飞,段绍光,卞春松,庞万福,刘杰,金黎平*   

  1. 中国农业科学院蔬菜花卉研究所 / 农业部薯类作物生物学和遗传育种重点实验室,北京 100081
  • 收稿日期:2016-07-03 修回日期:2017-01-21 出版日期:2017-06-12 网络出版日期:2017-03-13
  • 通讯作者: 金黎平,E-mail: jinliping@caas.cn
  • 基金资助:

    本研究由国家“十二五”科技支撑计划项目(2012BAD02B05)和国家现代农业产业技术体系建设专项(CARS-10)资助。

Development and Verification of SCAR Marker Linked to Maturity in Tetraploid Potato

LI Xing-Cui,LI Guang-Cun,XU Jian-Fei,DUAN Shao-Guang,BIAN Chun-Song,PANG Wan-Fu,LIU Jie,JIN Li-Ping*   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing 100081, China
  • Received:2016-07-03 Revised:2017-01-21 Published:2017-06-12 Published online:2017-03-13
  • Contact: 金黎平,E-mail: jinliping@caas.cn
  • Supported by:

    This study was supported by the National Key Technology Support Program of China (2012BAD02B05) and the China Agriculture Research System (CARS-10).

摘要:

熟性是马铃薯的重要数量性状之一。本研究以马铃薯早熟品种中薯3号和晚熟品种中薯19及其熟性分离群体(221份)为材料,高通量简化基因组测序和集群分离分析(BSA)相结合,开发获得一个SCAR标记,命名为SCAR5-8。进一步利用该标记对分离群体的53份早熟和63份晚熟子代及70份四倍体马铃薯品种进行验证,结果表明,该标记在分离群体和四倍体品种中的检测结果与表型鉴定结果总体吻合度分别达87.1%与81.4%,Pearson’s双侧相关分析显示,其相关性均达极显著水平。该SCAR标记可被用于标记辅助选择,对加速四倍体马铃薯育种进程具有重要意义。

关键词: 马铃薯, 熟性, 标记开发, 分子标记辅助育种

Abstract:

Maturity is one of the most important quantitative traits in potato. In this study, a maturity linked molecular marker SCAR5-8 was developed using Zhongshu 3, Zhongshu 19 and their F1 segregation population consisting of 221 individuals via reduced-representation sequencing and bulked segregant analysis. A further testing of marker SCAR5-8 was performed using 53 early maturity individuals, 63 late maturity individuals and 70 tetraploid varieties, showing the selection accuracy 87.1% and 81.4% between marker test and phenotyping in segregation population and tetraploid varieties, respectively. Moreover, Pearson’s correlation analysis also showed that the marker SCAR5-8 was significantly correlated to maturity trait in potato. The developed SCAR5-8 marker could be used in marker-assisted selection.

Key words: Potato, Maturity, Marker development, Marker-assisted selection

[1] Salaman R N. Potato Varieties. Cambridge, Cambridge: University Press, 1926 [2] Muller K O. Untersuchungen zur Genetik der Kartoffel . Abr. Boil. Reichsanst. 1927, 15: l77 [3] Ceponiene S, Bujauskas A. Inheritance of potato signs. Proceedings of the 7th Congress of the Lithuanian Society for Geneticists and Breeders, Vilnius, Lithuania, 1998, pp 20–22 [4] Van Eck H J, Rouppe van der Voort J R, Draaistra J, Van Zandvoort P, Van Enckevort E, Segers B, Peleman J, Jacobsen E, Helder J, Bakker J. The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Mol Breed, 1995, 1: 397–410 [5] Collins A, Milbourne D, Ramsay L, Meyer R, Chatot-Balandras C, Oberhagemann P, de Jong W, Gebhardt C, Bonnel E, Waugh R. QTLs for field resistance to late blight in potato are strongly correlated with maturity and vigour. Mol Breed, 1999, 5: 387–398 [6] Oberhagemann P, Chatot-Balandras C, Sch?fer-Pregl R, Wegener D, Palomino C, Salamini F, Bonnel E, Gebhardt C. Genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed, 1999, 5: 399–415 [7] Ewing E E, Simko I, Smart C D, Bonierbale M W, Mizubuti E S G, May G D, Fry W E. Genetic mapping from field tests of qualitative and quantitative resistance to Phytophthora infestans in a population derived from Solanum tuberosum and Solanum berthaultii. Mol Breed, 2000, 6: 25–36 [8] Sliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt G, Zimnoch-Guzowska E. Tagging QTLs for late blight resistance and plant maturity from diploid wild relatives in a cultivated potato (Solanum tuberosum) background. Theor Appl Genet, 2007, 115: 101–112 [9] Danan S, Veyrieras J B, Lefebvre V. Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol, 2011, 11: 16 [10] Kloosterman B, Abelenda J A, Gomez M D C, Oortwijn M, de Boer J M, Kowitwanich K, Horvath B M, van Eck H J, Smaczniak C, Prat S, Visser R G F, Bachem C W B. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 2013, 495: 246–250 [11] Bradshaw J E, Pande B, Bryan G J, Hackett C A, McLean K, Stewart H E, Waugh R. Interval Mapping of Quantitative Trait Loci for Resistance to Late Blight [Phytophthora infestans (Mont.) de Bary], Height and Maturity in a Tetraploid Population of Potato ( Solanum tuberosum subsp. tuberosum ). Genetics, 2004, 168: 983–995 [12] Hackett C A, Bradshaw J E, Bryan G J. QTL mapping in autotetraploids using SNP dosage information. Theor Appl Genet, 2014, 1–20 [13] Massa A N, Manrique-Carpintero N C, Coombs J J, Zarka D G, Boone A E, Kirk W W, Hackett C A, Bryan G J, Douches D S. Genetic linkage mapping of economically important traits in cultivated tetraploid potato (Solanum tuberosum L.). G3: Genes Genom Genet, 2015, 5: 2357–2364 [14] Bradshaw J E, Hackett C A, Pande B, Bryan G J. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet, 2008, 116: 193–211 [15] 雷剑, 柳俊. 一个与马铃薯青枯病抗性连锁的SRAP标记筛选. 中国马铃薯, 2006, 20(3): 150–153 Yang J, Liu J. Identification of a SRAP marker linked to ralstonia solanacearum resistance in diploid potato. Chin Potato J, 2006, 20(3): 150–153(in Chinese with English abstract) [16] Bryan G J, McLean K, Bradshaw J E, De Jong W, Phillips M, Castelli L, Waugh R. Mapping QTLs for resistance to the cystnematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet, 2002, 105: 68–77 [17] 王加加, 徐建飞, 李颖, 王凤义, 黄三文. 马铃薯抗晚疫病主效基因R10的RGA2CAPS标记的开发. 园艺学报, 2008, 35: 885–890 Wang J J, Xu J F, Li Y, Wang F Y, Huang S W. Developing of RGA-CAPS markers for resistant gene R10 to potato late blight. Acta Hort Sin, 2008, 35: 885–890 (in Chinese with English abstract) [18] Tiwari J K, Siddappa S, Singh B P, Kaushik S K, Chakrabarti S K, Bhardwaj V, Chandel P. Molecular markers for late blight resistance breeding of potato: an update. Plant Breed, 2013, 132: 237–245 [19] Muktar M S, Lübeck J, Strahwald J. Gebhardt C. Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthor infestans based on differential expression combined with SNP association and linkage mapping. Front Genet, 2015, 6: 1–16 [20] Ramakrishnan A P, Ritland C E, Blas Sevillano R, Riseman A. Review of potato molecular markers to enhance trait selection. Am Potato J, 2015, 92: 455–472 [21] 朱文文, 徐建飞, 李广存, 段绍光, 刘杰, 卞春松, 庞万福, Walter De Jong, 金黎平. 马铃薯块茎形状基因CAPS标记的开发与验证. 作物学报, 2015, 41: 1529–1536 Zhu W W, Xu J F, Li G C, Duan S G, Liu J, Bian C S, Pang W F, Walter D J, Jin L P. Development and verification of a CAPS marker linked to tuber shape gene in potato. Acta Agron Sin, 2015, 41: 1529–1536 (in Chinese with English abstract) [22] Visker M H P W, Keizer L C P, Van Eck H J, Jacobsen E, Colon L T, Struik P C. Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet, 2003, 106: 317–325

[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[13] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[14] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[15] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!