欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 693-704.doi: 10.3724/SP.J.1006.2019.84120

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析

袁溢,朱双,方婷婷,蒋金金(),王幼平   

  1. 扬州大学生物科学与技术学院, 江苏扬州 225009
  • 收稿日期:2018-09-09 接受日期:2018-12-24 出版日期:2019-05-12 网络出版日期:2019-01-17
  • 通讯作者: 蒋金金
  • 基金资助:
    本研究由国家自然科学基金项目(31771824);本研究由国家自然科学基金项目(31771825);中国和江苏省博士后科学基金项目(2014M561719);中国和江苏省博士后科学基金项目(2015T80591);中国和江苏省博士后科学基金项目(1401078B)

Analysis of drought resistance and DNA methylation level of resynthesized Brassica napus

Yi YUAN,Shuang ZHU,Ting-Ting FANG,Jin-Jin JIANG(),You-Ping WANG   

  1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-09-09 Accepted:2018-12-24 Published:2019-05-12 Published online:2019-01-17
  • Contact: Jin-Jin JIANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771824);This study was supported by the National Natural Science Foundation of China(31771825);China and Jiangsu Postdoctoral Science Foundation(2014M561719);China and Jiangsu Postdoctoral Science Foundation(2015T80591);China and Jiangsu Postdoctoral Science Foundation(1401078B)

摘要:

甘蓝型油菜是具有重要经济价值的多倍体物种, 是优质食用植物油和饲料蛋白质的重要来源之一。但是其驯化历史较短, 遗传背景狭窄, 且在整个生命周期中都对干旱胁迫敏感, 因此培育高产耐旱品种是甘蓝型油菜的重要育种目标之一。本文用15% PEG-6000模拟干旱胁迫, 对人工合成甘蓝型油菜不同世代(S1~S4)及其二倍体亲本进行不同时间的胁迫处理, 并结合表型观察, 以及叶片中丙二醛(MDA)、可溶性蛋白含量、过氧化物酶(POD)、超氧化物歧化酶(SOD)等生理指标的测定, 初步了解上述材料的抗旱性差异。结合表型观察和叶片中相对含水量分析, 发现人工合成甘蓝型油菜S1~S4及其亲本的抗旱性表现为甘蓝 > Bn-S3 > Bn-S4 > Bn-S1 > Bn-S2 > 白菜型油菜。干旱胁迫后Bn-S3、Bn-S4的POD及SOD活性较高, MDA含量较低, 表明Bn-S3和Bn-S4能更加有效地清除活性氧(ROS), 对过氧化损伤的防御能力更强。通过HPLC分析发现所有材料的甲基化水平在胁迫12 h时最高, 其中亲本白菜型油菜Br的甲基化水平最高, Bn-S1和Bn-S4介于两亲本之间, 而Bn-S2和Bn-S3低于两亲本。甲基化敏感多态性分析也显示人工合成甘蓝型油菜在干旱胁迫后, 甲基化和去甲基化水平均发生了明显的变化, 表明植物的甲基化变化可能有利于提高其抗旱能力。

关键词: 人工合成甘蓝型油菜, 白菜型油菜, 甘蓝, 干旱胁迫, DNA甲基化

Abstract:

Brassica napus, as one of the important resources of edible plant oil and forage protein, is a polyploid species with great economic value. However, it is sensitive to drought stress throughout whole lifecycle due to short domestication history and narrow genetic background. Thus, it is a main purpose to breed B. napus cultivar with high yield and drought resistance. In the present study, we compared the drought resistance among S1-S4 generations of resynthesized B. napus and diploid parents under different time periods of 15% PEG-6000 treatment. The different drought tolerance levels were assessed based on phenotype observation, leaf physiological indexes (MDA, soluble protein, SOD and POD). Accompanying with water content analysis, we found the drought tolerance showed a trend of B. oleracea > Bn-S3 > Bn-S4 > Bn-S1 > Bn-S2 > B. rapa. Under drought stress, POD and SOD activities in Bn-S3 and Bn-S4 were higher than these in other plants tested, and MDA content was decreased, indicating that Bn-S3 and Bn-S4 have better ability in clearing ROS, and defending from peroxidation damage. On the basis of HPLC analysis, the methylation level in all materials was the highest under drought stress of 12 h. And the methylation level in B. rapa was higher than that in others, that in Bn-S1 and Bn-S4 was between that in parents, while that in Bn-S2 and Bn-S3 was lower than that in parents. Methylation sensitive amplification polymorphism analysis also revealed multiple changes in methylation and demethylation level of resynthesized B. napus under drought stress, indicating methylation changes might be involved in plant drought tolerance.

Key words: resynthesized Brassica napus, B. rapa, B. oleracea, drought stress, DNA methylation

图1

干旱胁迫后植物的表型 Br: 白菜型油菜; Bo: 甘蓝; S1~S4: 人工合成甘蓝型油菜自交后代。"

图2

干旱胁迫12 h后植物的相对含水量和相对保水力 CK: 对照; DT: 干旱胁迫; Br: 白菜型油菜; Bo: 甘蓝; S1~S4: 人工合成甘蓝型油菜自交后代。"

图3

干旱胁迫处理下植物的生理指标分析 A: 过氧化物酶活力; B: 丙二醛含量; C: 超氧化物歧化酶活力; D: 可溶性蛋白含量。平均值±标准误, n = 3。Br: 白菜型油菜; Bo: 甘蓝; S1~S4: 人工合成甘蓝型油菜自交后代。"

图4

干旱胁迫处理下植物DNA甲基化水平的变化 Br: 白菜型油菜; Bo: 甘蓝; Bn-S1~S4: 人工合成甘蓝型油菜自交后代。"

图5

干旱胁迫处理下植物中不同类型DNA甲基化修饰的百分比 Br: 白菜型油菜; Bo: 父本甘蓝; Bn-S1~S4: 人工合成甘蓝型油菜自交后代。"

表1

干旱胁迫6 H植物甲基化水平的变化"

表2

干旱胁迫12H植物甲基化水平的变化"

表3

干旱胁迫24H植物甲基化水平的变化"

[1] 朱健康, 倪建平 . 植物非生物胁迫信号转导及应答. 中国稻米, 2016,22(6):52-60.
Zhu J K, Ni J P . Abiotic stress signaling and responses in plants. Chin Rice, 2016,22(6):52-60 (in Chinese with English abstract).
[2] 王汉中, 殷艳 . 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421.
Wang H Z, Yin Y . Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract).
[3] Zhu M, Assmann S M . Metabolic signatures in response to abscisic acid (ABA) treatment in Brassica napus guard cells revealed by metabolomics. Sci Rep, 2017,7:12875-12890.
[4] Tardieu F . Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol, 2013,4:17-27.
[5] 纪瑞鹏, 车宇胜, 朱永宁, 梁涛, 冯锐, 于文颖, 张玉书 . 干旱对东北春玉米生长发育和产量的影响. 应用生态学报, 2012,23:3021-3026.
Ji R P, Che Y S, Zhu Y N, Liang T, Feng R, Yu W Y, Zhang Y S . Impacts of drought stress on the growth and development and grain yield of spring maize in northeast China. Chin J Appl Ecol, 2012,23:3021-3026 (in Chinese with English abstract).
[6] Luo L J . Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot, 2010,61:3509-3517.
doi: 10.1093/jxb/erq185
[7] Fang Y J, Xiong L Z . General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci, 2015,72:673-689.
doi: 10.1007/s00018-014-1767-0
[8] 王娅玲, 李维峰 . 干旱胁迫对植物生长及其生理的影响概述. 南方农业, 2015,9(6):37.
Wang Y L, Li W F . Summary of effects of drought stress on plant growth and physiology. South Agric, 2015,9(6):37 (in Chinese).
[9] Enjalbert J N, Zheng S S, Johnson J J, Mullen J L, Byrne P F , McKay J K . Brassicaceae germplasm diversity for agronomic and seed quality traits under drought stress. Ind Crops Prod, 2013,47:176-185.
doi: 10.1016/j.indcrop.2013.02.037
[10] 焦靖芝, 谢伶俐, 李小龙, 田志宏, 许本波 . 甘蓝型油菜耐旱机理研究进展. 湖北农业科学, 2015,54:773-777.
Jiao J Z, Xie L L, Li X L, Tian Z H, Xu B B . Drought tolerance in rapeseed ( Brassica napus L.) oil. Hubei Agric Sci, 2015,54:773-777 (in Chinese with English abstract).
[11] Mailer R J, Cornish P S . Effects of water stress on glucosinolate and oil concentrations in the seeds of rape ( Brassica napus L.) and turnip rape( Brassica rapa L. var. silvestris [Lam.] Briggs). Aust J Exp Agric, 1987,27:707-711.
[12] Tesfamariam E H, Annandale J G, Steyn J M . Water stress effects on winter canola growth and yield. Agron J, 2010,102:658-666.
doi: 10.2134/agronj2008.0043
[13] Ma Q, Turner D W . Osmotic adjustment segregates with and is positively related to seed yield in F3 lines of crosses between Brassica napus and B. juncea subjected to water deficit. Aust J Exp Agric, 2006,46:1621-1627.
[14] Danquah A, Zelicourt A D, Colcombet J, Hirt H . The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv, 2014,32:40-52.
doi: 10.1016/j.biotechadv.2013.09.006
[15] Balestrini S, Vartanian N . Rhizogenic activity during water stress-induced senescence in Brassica napus var. oleifera. Physiol Veg, 1983,21:269-277.
[16] Jaradat M R, Feurtado J A, Huang D Q, Lu Y Q, Cutler A J . Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biol, 2013,13:192-210.
doi: 10.1186/1471-2229-13-192
[17] Szabados L, Savouré A . Proline: a multifunctional amino acid. Trends Plant Sci, 2010,15:89-97.
[18] Di F F, Jian H J, Wang T Y, Chen X P, Ding Y R, Du H, Lu K, Li J N, Liu LZ . Genome-wide analysis of the PYL gene family and identification of PYL genes that respond to abiotic stress in Brassica napus. Genes, 2018,9:156-173.
[19] Luo Q X, Peng M, Zhang X L, Lei P, Ji X M, Wahsoon C, Meng F J, Sun G Y . Comparative mitochondrial proteomic, physiological, biochemical and ultrastructural profiling reveal factors underpinning salt tolerance in tetraploid black locust ( Robinia pseudoacacia L.). BMC Genomics, 2017,18:648-670.
[20] Fomeju B F, Falentin C, Lassalle G , Manzanares-Dauleux M J, Régine D . Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker. Front Plant Sci, 2015,6:772-785.
[21] Ramsey J . Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci USA, 2011,108:7096-7101.
doi: 10.1073/pnas.1016631108
[22] Allario T, Brumos J , Colmenero-Flores J M, Iglesias D J, Pina J A, Navarro L, Talon M, Ollitrault P, Morillon R . Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ, 2013,36:856-868.
doi: 10.1111/pce.2013.36.issue-4
[23] Eliášová A, Münzbergová Z . Factors influencing distribution and local coexistence of diploids and tetraploids of Vicia cracca: inferences from a common garden experiment. J Plant Res, 2017,130:677-687.
[24] Manzaneda A J, Rey P J, Bastida J M, Weiss-Lehman C, Raskin E, Mitchell-Olds T . Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon( Poaceae). New Phytol, 2012,193:797-805.
[25] Novikova P Y, Hohmann N , Van de Peer Y . Polyploid Arabidopsis species originated around recent glaciation maxima. Curr Opin Plant Biol, 2018,42:8-15.
[26] Xu Y, Xu H, Wu X, Fang X, Wang J . Genetic changes following hybridization and genome doubling in synthetic Brassica napus. Biochem Genet, 2012,50:616-624.
[27] Golicz A A, Bayer P E, Barker G C, Edger P P, Kim H, Martinez P A , Chan C K K, Severn-Ellis A, McCombie W R, Parkin I A P, Paterson A H, Pires J C, Sharpe A G, Tang H B, Teakle G R, Town C D, Batley J, Edwards D . The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun, 2016,7:13390-13397.
[28] Gabur I, Chawla H S, Liu X W, Kumar V, Faure S, Tiedemann A, Jestin C, Dryzska E, Volkmann S, Breuer F, Delourme R, Snowdon R, Obermeier C . Finding invisible quantitative trait loci with missing data. Plant Biotechnol J, 2018, doi: 10.1111/ pbi.12942. >
[29] 李勤菲, 陈致富, 刘瑶, 梅家琴, 钱伟 . 六倍体( A nA nC nC nC oC o)与白菜型油菜杂交可交配性及后代菌核病抗性 . 中国农业科学, 2017,50:123-130.
Li Q F, Chen Z F, Liu Y, Mei J Q, Qian W . Crossability and Sclerotinia resistance among hybrids between hexaploid (A nA nC nC nC oC o) and Brassica rapa. Sci Agric Sin , 2017,50:123-130 (in Chinese with English abstract).
[30] Ran L P, Fang T T, Rong H, Jiang J J, Fang Y J, Wang Y P . Analysis of cytosine methylation in early generations of resynthesized Brassica napus. J Integr Agric, 2016,15:1228-123.
[31] Barrs H D, Weatherley P E . A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci, 1968,15:413-428.
[32] Hodges D M, Delong J M, Forney C F, Prangel R K . Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999,207:604-611.
doi: 10.1007/s004250050524
[33] Snyder J C, Desborough S L . Rapid estimation of potato tuber total protein content with coomassie brilliant blue G-250. Theor Appl Genet, 1978,52:135-139.
[34] Giannopolitis C N, Ries S K . Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings (of corn, peas, and oats). Plant Physiol, 1977,59:315-318.
doi: 10.1104/pp.59.2.315
[35] Xiong L Z, Xu C G , Saghai Maroof M A, Zhang Q F . Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet, 1999,261:439-446.
doi: 10.1007/s004380050986
[36] 谢涛, 戎浩, 蒋金金, 孔月琴, 冉丽萍, 吴健, 王幼平 . 人工合成甘蓝型油菜及其亲本的甲基化变异模式分析. 作物学报, 2016,42:513-524.
Xie T, Rong H, Jiang J J, Kong Y Q, Ran L P, Wu J, Wang Y P . Analysis of DNA methylation patterns in resynthesized Brassica napus and diploid parents. Acta Agron Sin, 2016,42:513-524 (in Chinese with English abstract).
[37] Valliyodan B, Nguyen H T . Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol, 2006,9:189-195.
doi: 10.1016/j.pbi.2006.01.019
[38] Qaderi M M, Kurepin L V, Reid D M . Growth and physiological responses of canola ( Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant, 2006,128:710-721.
[39] Joshi R, Wani S H, Singh B, Bohra A, Dar Z A, Lone A A, Pareek A , Singla-Pareek Sneh L . Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci, 2016,7:1029-1043.
[40] Nagahatenna D S K, Langridge P, Whitford R . Tetrapyrrole-based drought stress signalling. Plant Biotechnol J, 2015,13:447-459.
doi: 10.1111/pbi.12356
[41] Shao H B, Chu L Y, Jaleel C A, Manivannan P, Panneerselvam R, Shao M A . Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol, 2009,29:131-151.
doi: 10.1080/07388550902869792
[42] Liu D, Pei Z F, Naeem M S, Ming D F, Liu H B, Khan F, Zhou W J . 5-Aminolevulinic acid activates antioxidative defence system and seedling growth in Brassica napus L. under water-deficit stress. J Agron Crop Sci, 2011,197:284-295.
[43] Shafiq S, Akram N A, Ashraf M, Arshad A . Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola ( Brassica napus L.) plants. Acta Physiol Plant, 2014,36:1539-1553.
[44] Mittler R, Vanderauwera S, Gollery M, Gollery M, Breusegem F V . Reactive oxygen gene network of plants. Trends Plant Sci, 2004,9:490-498.
doi: 10.1016/j.tplants.2004.08.009
[45] Ahmad J, Bashir H, Bagheri R, Baig A, Al-Huqail A, Ibrahim M M, Qureshi M I . Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PLoS One, 2017,12:e0185118.
[46] Akram N A, Iqbal M, Muhammad A, Ashraf M, Al-Qurainy F, Shafiq S . Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola ( Brassica napus L.) under drought stress. Protoplasma, 2018,255:163-174.
[47] Shafiq S, Akram N A, Ashraf M . Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish ( Raphanus sativus L.) under water-deficit conditions? Sci Hortic, 2015,185:68-75.
[48] Latif M, Akram N A, Ashraf M . Regulation of some biochemical attributes in drought-stressed cauliflower ( Brassica oleracea L.) by seed pretreatment with ascorbic acid. Sci Hortic, 2016,91:129-137.
[49] Caverzan A, Passaia G, Rosa S B, Ribeiro C W, Lazzarotto F, Margis-Pinheiro M . Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol, 2012,35:1011-1019.
doi: 10.1590/S1415-47572012000600016
[50] Ren J, Sun L N, Zhang Q Y, Song X S . Drought tolerance is correlated with the activity of antioxidant enzymes in Cerasus humilis seedlings. Biomed Res Int, 2016,2016:2038-2047.
[51] Xia L J, Yang L Q, Sun N L, Li J, Fang Y J, Wang Y P . Physiological and antioxidant enzyme gene expression analysis reveals the improved tolerance to drought stress of the somatic hybrid offspring of Brassica napus and Sinapis alba, at vegetative stage. Acta Physiol Planta, 2016,38:1-10.
[52] Wang T, Huang D Y, Chen B Y, Mao N N, Qiao Y S, Ji M X . Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp. Genes Genomics, 2018,40:321-331.
[53] Jiao J, Wu J, Lyu Z, Sun C, Gao L, Yan X, Cui L, Tang Z, Yan B, Jia Y . Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars. Genet Mol Res, 2015,14:15177-15187.
[54] Fang L, Gong H, Hu Y, Liu C X, Zhou B L, Huang T, Wang Y K, Chen S Q, Fang D D, Du X M, Chen H, Chen J D, Wang S, Wang Q, Wan Q, Liu B L, Pan M Q, Chang L J, Wu H T, Mei G F, Xiang D, Li X H, Cai C P, Zhu X F, Chen Z J, Han B, Chen X Y, Guo W Z, Zhang T Z, Huang X H . Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol, 2017,18:33-45.
doi: 10.1186/s13059-017-1167-5
[55] Song Q X, Zhang T Z, Stelly D M, Chen Z J . Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol, 2017,18:99-112.
doi: 10.1186/s13059-017-1229-8
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[10] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[11] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[12] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[13] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[14] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[15] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!