欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1565-1575.doi: 10.3724/SP.J.1006.2019.93005

• 耕作栽培·生理生化 • 上一篇    下一篇

土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响

陈晓影,刘鹏(),程乙,董树亭,张吉旺,赵斌,任佰朝   

  1. 作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安271018
  • 收稿日期:2019-01-28 接受日期:2019-04-15 出版日期:2019-10-12 网络出版日期:2019-09-10
  • 通讯作者: 刘鹏
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300106);本研究由国家重点研发计划项目(2018YFD0300603);国家自然科学基金项目(31771713);国家自然科学基金项目(31371576);山东省现代农业产业技术体系项目资助(SDAIT-02-08)

Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage

CHEN Xiao-Ying,LIU Peng(),CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao   

  1. State Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2019-01-28 Accepted:2019-04-15 Published:2019-10-12 Published online:2019-09-10
  • Contact: Peng LIU
  • Supported by:
    This study was supported by the National Basic Research Program of China(2016YFD0300106);This study was supported by the National Basic Research Program of China(2018YFD0300603);the National Natural Science Foundation of China(31771713);the National Natural Science Foundation of China(31371576);the Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08)

摘要:

采用大田试验与土柱试验相结合的方式, 设置距离地表-5 cm (P5)、-10 cm (P10)、-15 cm (P15)和-20 cm (P20)施用磷肥处理, 以不施磷肥为对照(CK), 研究磷肥施用深度对夏玉米根系分布、干物质积累与产量形成及磷肥吸收和利用效率的影响。结果表明, 磷肥施用深度显著影响夏玉米根系干重及根长, 表现为P15>P10>P20>P5>CK。与常规磷肥施用深度(P5)处理相比, P15处理玉米籽粒产量两年平均提高23.1%, 根干重及总根长两年平均提高13.1%、22.9%; P15、P20处理均增加了-20 cm以下土层的根干重比例及根长比例, 土柱试验分别达到35.4%和36.4%、58.7%和59.3%, 大田试验根干重两年均达到19.0%, 根长比重分别达到39.8%和39.9%。根系分布的优化促进了植株磷素积累与转运, P10、P15、P20处理较P5处理磷积累量2年平均提高10.6%、25.2%和14.7%, 磷转运量平均提高46.9%、76.6%和57.6%, 籽粒产量相应增加12.9%、23.1%和10.6%。P15比P5处理的磷肥偏生产力、农学利用效率和表观利用效率两年平均值分别提高19.1 kg kg -1、19.1 kg kg -1和25.2%。磷肥深施能够增加深层土壤根系的分布比例, 提高植株对磷肥的吸收、利用效率, 显著提高夏玉米产量, 在本试验条件下以磷肥集中施用在-15 cm处效果最好。

关键词: 夏玉米, 施磷深度, 根系, 产量, 磷肥利用效率

Abstract:

Phosphorus fertilizer application depths are extremely important for increasing phosphorus uptake and utilization efficiencies. In the present study, root distribution, biomass, grain yield, phosphorus uptake and utilization efficiencies were determined in field experiment and soil column experiment, with five treatments including CK (no P applied), P5 (phosphorus application depth was 5 cm), P10 (phosphorus application depth was 10 cm), P15 (phosphorus application depth was 15 cm), and P20 (phosphorus application depth was 20 cm). Phosphorus fertilizer application depths significantly affected root dry weight and root length of summer maize with a trend of P15>P10>P20>P5>CK. Compared with P5 treatment, averaged grain yield of P15 treatment increased by 23.1% in two years, averaged root dry weight and total root length increased by 13.1% and 22.9% in two years. Both P15 and P20 treatments increased the proportion of root dry weight and root length in the soil layer below -20 cm. The proportion of root dry weight of P15 and P20 treatments reached 35.4% and 36.4%, and the proportion of root length reached 58.7% and 59.3% in soil column experiments; the proportion of root dry weight both reached 19.0% and the proportion of root length reached 39.8% and 39.9% in field experiment, respectively. The optimization of root distribution promoted the accumulation and transport of phosphorus in plants. Compared with P5 treatment, P10, P15, and P20 treatments increased the averaged phosphorus accumulation in two years by 10.6%, 25.2%, and 14.7%, the average phosphorus transport amount in two years by 46.9%, 76.6%, and 57.6%, and the grain yield by 12.9%, 23.1%, and 10.6%, respectively. Compared with P5 treatment, P15 treatment increased the averaged P partial factor productivity, P agronomic efficiency and P apparent utilization efficiency by 19.1 kg kg -1, 19.1 kg kg -1, and 25.2% in two years, respectively. In summary, deep fertilization of phosphorus could increase the distribution of root in deep soil layers, improve the absorption and utilization efficiencies of phosphorus in plants, and significantly improve the grain yield of summer maize. Under the condition of this study, the suitable P fertilizer application depth was 15 cm from the soil surface.

Key words: summer maize, phosphorus application depth, root, yield, phosphorus utilization efficiency

表1

试验田养分含量"

试验类型Experiment 年份
Year
土层
Soil layer
(cm)
pH 有机质
Soil organic matter (g kg-1)
全氮
Total N
(g kg-1)
速效氮
Available N (mg kg-1)
有效磷
Olsen P
(mg kg-1)
速效钾Available K
(mg kg-1)
大田试验
Field experiment
2017 0-20 6.35 13.56 0.92 87.52 18.92 145.07
20-40 7.21 9.51 0.56 58.36 13.15 94.13
40-60 7.42 5.70 0.21 42.68 5.38 57.56
2018 0-20 6.24 14.17 0.96 89.02 19.38 158.86
20-40 7.04 10.37 0.61 60.67 12.21 98.24
40-60 7.34 6.03 0.25 49.31 6.42 68.60
土柱试验Soil column experiment 7.23 10.72 0.73 45.54 15.66 66.98

图1

试验田夏玉米全生育期平均温度与降水量"

图2

磷肥施用深度对夏玉米干物质积累的影响 不同字母表示处理间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

表2

磷肥施用深度对夏玉米产量及产量构成因素的影响"

年份
Year
处理
Treatment
单位面积穗数
Ears (×104 ear hm-2)
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
籽粒产量
Yield (kg hm-2)
2017 CK 6.37 a 425.40 c 381.39 b 7661.53 d
P5 6.49 a 439.83 b 385.23 ab 8293.59 c
P10 6.42 a 450.31 b 391.15 ab 9277.15 b
P15 6.56 a 476.48 a 397.24 a 10023.14 a
P20 6.55 a 448.70 b 398.06 a 8926.96 b
2018 CK 6.44 a 477.24 b 381.39 b 9438.52 c
P5 6.41 a 476.15 b 385.23 ab 9711.62 c
P10 6.33 a 493.59 b 391.15 ab 11063.84 b
P15 6.56 a 525.54 a 397.24 a 12178.65 a
P20 6.34 a 491.54 b 398.06 a 11021.54 b
变异来源 Source of variation
年份 Year (Y) NS *** *** ***
磷肥施用深度
Phosphorus application depth (P)
NS *** *** ***
年份×磷肥施用深度 Y×P NS NS NS NS

图3

磷肥施用深度对夏玉米根干重及根长的影响 不同字母表示处理间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

图4

不同施肥深度下夏玉米抽雄期根干重和根长在0~60 cm土壤剖面的垂直分布(2018) CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

图5

不同施肥深度对夏玉米不同土层中根系干重比例及根长比例的影响 CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

表3

夏玉米不同器官和植株中磷积累量"

器官
Organ
处理
Treatment
2017 2018
抽雄期 VT 灌浆期 R2 完熟期 R6 抽雄期 VT 灌浆期 R2 完熟期 R6
营养器官
Vegetation organ
CK 41.34 c 47.98 e 36.13 e 46.49 d 54.45 e 43.40 c
P5 51.38 b 56.76 d 40.81 d 59.55 c 67.25 d 51.23 b
P10 58.68 a 75.80 b 49.35 b 62.61 b 72.33 c 51.82 b
P15 60.17 a 83.46 a 51.91 a 69.72 a 82.52 a 57.63 a
P20 57.80 a 73.13 c 45.74 c 63.82 b 76.06 b 53.18 b
籽粒
Grains
CK 3.48 b 51.60 e 6.66 c 78.45 d
P5 5.31 ab 60.35 d 12.90 b 88.14 c
P10 6.26 a 67.54 c 15.79 a 96.32 b
P15 7.36 a 79.81 a 17.97 a 104.06 a
P20 6.58 a 71.46 b 16.09 a 98.00 b
整株
Whole plant
CK 41.34 c 51.46 e 87.73 d 46.49 d 61.10 e 121.85 d
P5 51.38 b 62.07 d 101.16 c 59.55 c 80.14 d 139.37 c
P10 58.68 a 82.05 b 116.99 b 62.61 b 88.12 c 148.14 b
P15 60.17 a 90.82 a 131.72 a 69.72 a 100.49 a 161.69 a
P20 57.80 a 79.71 c 117.09 b 63.82 b 92.14 b 151.18 b

表4

磷肥施用深度对夏玉米磷转运的影响"

处理
Treatment
2017 2018
转运量
Translocation
amount (kg hm-2)
转运率
Translocation
rate (%)
贡献率
Contribution
rate (%)
转运量
Translocation
amount (kg hm-2)
转运率
Translocation rate (%)
贡献率
Contribution
rate (%)
CK 11.85 d 24.66 c 23.96 c 11.05 d 20.30 b 14.08 c
P5 15.95 c 28.11 b 27.31 b 16.02 c 23.77 b 18.22 b
P10 26.45 b 34.90 a 37.83 a 20.51 b 28.36 a 21.30 ab
P15 31.55 a 37.79 a 39.90 a 24.89 a 30.16 a 23.95 a
P20 27.50 b 37.61 a 37.46 a 22.88 ab 30.08 a 23.34 a

表5

磷肥施用深度对夏玉米磷肥偏生产力和磷利用效率的影响"

年份
Year
处理
Treatment
磷肥偏生产力
PPFP (kg kg-1)
磷肥表观利用效率
PAUE (%)
磷肥农学利用效率
PAE (kg kg-1)
2017 P5 78.99 c 12.79 c 6.02 c
P10 88.35 b 27.77 b 15.39 b
P15 95.46 a 41.90 a 22.49 a
P20 85.02 b 27.87 b 12.05 b
2018 P5 94.29 c 16.68 c 5.98 c
P10 105.37 b 25.04 b 17.05 b
P15 115.99 a 37.94 a 27.67 a
P20 104.97 b 27.93 b 16.65 b
变异来源 Source of variation
年份 Year (Y) *** NS *
磷肥施用深度Phosphorus application depth (P) *** *** ***
年份×磷肥施用深度 Y×P NS * NS
[1] Wissuwa M . How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol, 2003,133:1947-1958.
[2] Vance C P, Uhdestone C, Allan D L . Phosphorus acquistion and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2010,157:423-447.
[3] Borling K, Barberis E, Otabbong E . Impact of long-term inorganic phosphorus fertilization on accumulation, sorption and release of phosphorus in five Swedish soil profiles. Nutr Cycl Agroecosys, 2004,69:11-21.
[4] 慕韩锋, 王俊, 刘康, 刘文兆, 党延辉, 王兵 . 黄土旱塬长期施磷对土壤磷素空间分布及有效性的影响. 植物营养与肥料学报, 2008,14:424-430.
Mu H F, Wang J, Liu K, Liu Z W, Dang Y H, Wang B . Effect of long-term fertilization on spatial distribution and availability of soil phosphorus in Loess Plateau. Plant Nutr Fert Sci, 2008,14:424-430 (in Chinese with English abstract).
[5] 刘彩亮 . 磷肥高效利用的分析及展望. 磷肥与复肥, 2016,31(7):41-42.
Liu C L . Analysis and prospect of efficient use of phosphate fertilizer. Phosphate & Compound Fert, 2016,31(7):41-42 (in Chinese with English abstract).
[6] Schoumans O F, Bouraoui F, Kabbe C, Oenema O, Van Dijk K C . Phosphorus management in Europe in a changing world. AMBIO, 2015,44(S2):180-192.
[7] Ju X T, Kou C L, Christie P, Dou Z X, Zhang F S . Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ Pollut, 2007,145:497-506.
[8] Gheysari M, Mirlatifi S M, Homaee M, Asadi M E, Hoogenboom G . Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric Water Manage, 2009,96:946-954.
[9] 齐文增, 刘惠惠, 李耕, 邵立杰, 王飞飞, 刘鹏, 董树亭, 张吉旺, 赵斌 . 超高产夏玉米根系时空分布特性. 植物营养与肥料学报, 2012,18:69-76.
Qi W Z, Liu H H, Li G, Shao L J, Wang F F, Liu P, Dong S T, Zhang J W, Zhao B . Temporal and spatial distribution characteristics of super-high-yield summer maize root. Plant Nutr Fert Sci, 2012,18:69-76 (in Chinese with English abstract).
[10] 范秀艳, 杨恒山, 高聚林, 张瑞富, 王志刚, 张玉芹 . 施磷方式对高产春玉米磷素吸收与磷肥利用的影响. 植物营养与肥料学报, 2013,19:312-320.
Fan X Y, Yang H S, Gao J L, Zhang R F, Wang Z G, Zhang Y Q . Effects of phosphorus fertilization methods on phosphorus absorption and utilization of high yield spring maize. Plant Nutr Fert Sci, 2013,19:312-320 (in Chinese with English abstract).
[11] 张永清, 苗果园 . 冬小麦根系对施肥深度的生物学响应研究. 中国生态农业学报, 2006,14(4):72-75.
Zhang Y Q, Miao G Y . Biological response of winter wheat root system to fertilization depth. Chin J Eco-Agric, 2006,14(4):72-75 (in Chinese with English abstract).
[12] Lynch J P, Brown K M . Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil, 2001,237:225-237.
[13] 黄毅, 毕素艳, 邹洪涛, 窦森 . 秸秆深层还田对玉米根系及产量的影响. 玉米科学, 2013,21(5):109-112.
Huang Y, Bi S Y, Zou H T, Dou S . Effect of straw deep returning on corn root system and yield. Maize Sci, 2013,21(5):109-112 (in Chinese with English abstract).
[14] 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香 . 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018,51:1518-1526.
Yang Y M, Sun Y M, Jia L L, Jia S L, Meng C X . Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Sci Agric Sin, 2018,51:1518-1526 (in Chinese with English abstract).
[15] Morris E C, Griffiths M, Golebiowska A, Mairhofer S, Hersey J B, Goh T, Wangenheim D V, Atkinson B, Sturrock C J, Lynch J P, Vissenberg K, Ritz K, Wells D M, Mooney S J, Bennett M J . Shaping 3D root system architecture. Curr Biol, 2017,27:R919-R930.
[16] Lynch J P . Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013,112:347-357.
[17] Mi G H, Chen F J, Wu Q P, Lai N W, Yuan L X, Zhang F S . Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci China Life Sci, 2010,53:1369-1373.
[18] Postma J A, Dathe A, Lynch J P . The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol, 2014,166:590-602.
[19] Lynch J P, Wojciechowski T . Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot, 2015,66:2199-2210.
[20] 范秀艳, 杨恒山, 高聚林, 张瑞富, 王志刚, 张玉芹 . 超高产栽培下磷肥运筹对春玉米根系特性的影响. 植物营养与肥料学报, 2012,18:562-570.
Fan X Y, Yang H S, Gao J L, Zhang R F, Wang Z G, Zhang Y Q . Effects of phosphorus application on root characteristics of super-high-yield spring maize. Plant Nutr Fert Sci, 2012,18:562-570 (in Chinese with English abstract).
[21] 陈梦楠, 孙敏, 高志强, 温斐斐, 郝兴宇, 杨珍平 . 深施磷肥对旱地小麦土壤水分、根系分布及产量的影响. 灌溉排水学报, 2016,35(1):47-52.
Chen M N, Sun M, Gao Z Q, Wen F F, Hao X Y, Yang Z P . Effect of deep application of phosphate fertilizer on soil moisture, root distribution and yield of dryland wheat. J Irrig Drain, 2016,35(1):47-52 (in Chinese with English abstract).
[22] 陈书强, 许海涛, 段翠平 . 施磷量对玉米生长发育及产量构成因子及品质的影响. 河北农业科学, 2011,15(2):62-64.
Chen S Q, Xu H T, Duan C P . Effects of phosphorus application amount on growth and development, yield components and quality of maize. J Hebei Agric Sci, 2011,15(2):62-64 (in Chinese with English abstract).
[23] 边秀芝, 盖嘉慧, 郭金瑞, 阎孝贡, 任军, 赵金宝 . 玉米施磷肥的生物效应. 玉米科学, 2008,16(5):120-122.
Bian X Z, Ge J H, Guo J R, Yan X J, Ren J, Zhao J B . Biological effects of phosphorus fertilizer application on maize. Maize Sci, 2008,16(5):120-122 (in Chinese with English abstract).
[24] 赵靓, 侯振安, 李水仙, 刘立鹏, 黄婷, 张扬 . 磷肥用量对土壤速效磷及玉米产量和养分吸收的影响. 玉米科学, 2014,22(2):123-128.
Zhao L, Hou Z A, Li S X, Liu L P, Huang T, Zhang Y . Effects of P rate on soil available P, yield and nutrient uptake of maize. Maize Sci, 2014,22(2):123-128 (in Chinese with English abstract).
[25] 王鹏, 牟溥, 李云斌 . 植物根系养分捕获塑性与根竞争. 植物生态学报, 2012,36:1184-1196.
Wang P, Mou P, Li Y B . Review of root nutrient foraging plasticity and root competition of plants. Chin J Plant Ecol, 2012,36:1184-1196 (in Chinese with English abstract).
[26] 王空军, 郑洪建, 刘开昌, 张吉旺, 董树亭, 胡昌浩 . 我国玉米品种更替过程中根系时空分布特性的演变. 植物生态学报, 2001,25:472-475.
Wang K J, Zheng H J, Liu K C, Zhang J W, Dong S T, Hu C H . Evolution of maize root distribution in space-time during maize varieties replacing in china. J Plant Ecol, 2001,25:472-475 (in Chinese with English abstract).
[27] 尹宝重, 甄文超, 冯悦 . 海河低平原深松播种对夏玉米根系生理的影响及其节水增产效应. 作物学报, 2015,41:623-632.
Yin B Z, Zhen W C, Feng Y . Effects of subsoiling-seeding on root physiological indices, water-saving and yield-increasing behaviors in summer maize ( Zea mays L.) in Haihe Lowland Plain of China. Acta Agron Sin, 2015,41:623-632 (in Chinese with English abstract).
[28] Maddonni G A, Chelle M, Drouet J L, Andrieu B . Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crops Res, 2001,70:1-13.
[29] 张瑞富, 杨恒山, 范秀艳, 张宏宇, 柳宝林, 刘晶 . 施磷深度和深松对春玉米磷素吸收与利用的影响. 植物营养与肥料学报, 2018,24:880-887.
Zhang R F, Yang H S, Fan X Y, Zhang H Y, Liu B L, Liu J . Effects of phosphorus application depths on its uptake and utilization in spring maize under subsoiling tillage. Plant Nutr Fert Sci, 2018,24:880-887 (in Chinese with English abstract).
[30] 金继运, 何萍, 刘海龙, 李文娟, 黄绍文, 王秀芳 . 氮肥用量对高淀粉玉米和普通玉米吸氮特性及产量和品质的影响. 植物营养与肥料学报, 2004,10:568-573.
Jin J Y, He P, Liu H L, Li W J, Huang S W, Wang X F . Comparison of nitrogen absorption, yield and quality between high-starch and common corn as affected by nitrogen application plant. Plant Nutr Fert Sci, 2004,10:568-573 (in Chinese with English abstract).
[31] 赵营, 同延安, 赵护兵 . 不同供氮水平对夏玉米养分累积、转运及产量的影响. 植物营养与肥料学报, 2006,12:622-627.
Zhao Y, Tong Y A, Zhao H B . Effects of different N rates on nutrients accumulation, transformation and yield of summer maize. Plant Nutr Fert Sci, 2006,12:622-627 (in Chinese with English abstract).
[32] 于晓芳, 高聚林, 叶君, 王志刚, 孙继颖, 胡树平, 苏治军 . 深松及氮肥深施对超高产春玉米根系生长、产量及氮肥利用效率的影响. 玉米科学, 2013,21(1):114-119.
Yu X F, Gao J L, Ye J, Wang Z J, Sun J Y, Hu S P, Su Z J . Effects of deep loosening with nitrogen deep application on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize. Maize Sci, 2013,21(1):114-119 (in Chinese with English abstract).
[33] 赵伟, 宋春, 周攀, 王嘉雨, 徐锋, 叶芳, 王小春, 杨文钰 . 施磷量与施磷深度对玉米-大豆套作系统磷素利用率及磷流失风险的影响. 应用生态学报, 2018,29:1205-1214.
Zhao W, Song C, Zhou P, Wang J Y, Xu F, Ye F, Wang X C, Yang W Y . Effects of phosphorus application rates and depths on P utilization and loss risk in a maize-soybean intercropping system. Chin J Appl Ecol, 2018,29:1205-1214 (in Chinese with English abstract).
[34] 赵亚丽, 杨春收, 王群, 刘天学, 李潮海 . 磷肥施用深度对夏玉米产量和养分吸收的影响. 中国农业科学, 2010,43:4805-4813.
Zhao Y L, Yang C S, Wang Q, Liu T X, Li C H . Effects of phosphorus application depth on yield and nutrient uptake of summer maize. Sci Agric Sin, 2010,43:4805-4813 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!