欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1595-1603.doi: 10.3724/SP.J.1006.2019.94024

• 研究简报 • 上一篇    下一篇

DNA甲基化参与调控马铃薯干旱胁迫响应

李鹏程1,2,毕真真1,2,梁文君1,2,孙超1,2,张俊莲1,白江平1,2,*()   

  1. 1甘肃省干旱生境作物学重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070
    2甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2019-02-16 接受日期:2019-05-12 出版日期:2019-10-12 网络出版日期:2019-09-10
  • 通讯作者: 白江平
  • 基金资助:
    本研究由国家自然科学基金项目(31660432);本研究由国家自然科学基金项目(31460369);国家现代农业产业技术体系(马铃薯)建设专项(CARS-09-P14);甘肃省马铃薯产业体系(GARS-03-P1);中国科学院“西部之光”人才培养计划(2014-01);兰州市科技发展计划项目(2015-3-62);甘肃省科技厅项目(18JR3RA170);甘肃省教育厅高校科研项目资助(2018A-040)

DNA methylation involved in regulating drought stress response of potato

LI Peng-Cheng1,2,BI Zhen-Zhen1,2,LIANG Wen-Jun1,2,SUN Chao1,2,ZHANG Jun-Lian1,BAI Jiang-Ping1,2,*()   

  1. 1Gansu Provincial Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2019-02-16 Accepted:2019-05-12 Published:2019-10-12 Published online:2019-09-10
  • Contact: Jiang-Ping BAI
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31660432);This study was supported by the National Natural Science Foundation of China(31460369);the China Agriculture Research System(CARS-09-P14);the Gansu Potato Industry System (GARS-03-P1)(GARS-03-P1);the “Light of the West” Talent Training Program of the Chinese Academy of Sciences(2014-01);the Lanzhou Science and Technology Development Plan(2015-3-62);the Gansu Science and Technology Fund(18JR3RA170);the Gansu Provincial Department of Education University Research Project(2018A-040)

摘要:

非生物胁迫下表观遗传对调控植物基因表达起重要作用, 但是有关马铃薯干旱胁迫下的表观遗传研究甚少。本研究以马铃薯品种大西洋、费乌瑞它、C119、C16和青薯9号为试验材料, 以MS培养基为对照以及分别添加200 mmol L -1甘露醇、60 μmol L -1甲基化抑制剂(5-azadC)和60 μmol L -1甲基化抑制剂+200 mmol L -1甘露醇, 处理24 d后对试管苗表型性状和生理指标进行综合分析。结果发现, 不同品种马铃薯对甘露醇和甲基化抑制剂响应程度趋势类似。在干旱和DNA甲基化抑制剂分别处理下, 马铃薯植株干鲜重、株高、叶片数和叶绿素含量均显著减少(P<0.05), SOD、POD、CAT活性和Pro、MDA含量均显著增加(P<0.05), 而分枝数、根长、平均根粗均无明显变化, 表明马铃薯不同性状指标在响应干旱胁迫和DNA去甲基化时, 受到的调控通路可能不同。进一步比较干旱胁迫和DNA去甲基化共同处理与分别处理下表型性状和生理指标的差异发现, 共同处理使马铃薯植株表型性状受到进一步抑制, 同时活化了SOD、POD、CAT, 并且使Pro、MDA含量增加, 表明马铃薯在响应干旱胁迫过程中, 部分表型的形成与DNA甲基化调控相关。这将为深入研究马铃薯干旱胁迫响应与表观遗传学之间的调控网络通路提供初步的理论基础。

关键词: 马铃薯, 干旱胁迫, DNA甲基化, 形态生理, 综合评价

Abstract:

Although epigenetics is essential for regulating gene expression in plant under abiotic stress, there are few reports regarding the epigenetics of potato under drought stress. In this study, five potato cultivars including Atlantic, Favorita, C119, C16, and Qingshu 9, were used to verify that DNA methylation is involved in potato drought stress response. The plantlets were cultured for 24 days on MS medium, MS medium supplemented with 60 μmol L -1 methylation inhibitor (5-azadC), 200 mmol L -1 mannitol, and 60 μmol L -1 methylation inhibitor combined with 200 mmol L -1 mannitol, respectively. Phenotypes, and physiological and biochemical traits were recorded and comprehensively analyzed. The response of five potato cultivars to mannitol and 5-azadC was similar. With treatments of mannitol or 5-azadC, the dry/fresh weight, shoot height, leaf number and chlorophyll content decreased significantly (P < 0.05), while the activities of SOD, POD, CAT, and contents of proline and MDA increased significantly (P < 0.05). No significant changes were observed in branch number, root length and average root diameter, indicating that potato traits might have different regulatory pathways in response to drought stress and DNA demethylation. Compared with the individual treatment, combined-treatment further inhibited the growth of plantlets, and increased activities of SOD, POD, CAT, and contents of MDA and Pro under drought stress and 5-azadC treatment, indicating that the formation of some phenotypes (not all) in response to drought was regulated through the DNA methylation. The results provide preliminary data for further study on epigenetics regulatory pathway of potato under drought stress.

Key words: potato, drought stress, DNA methylation, morphological physiology, comprehensive analysis

图1

不同处理下马铃薯试管苗生长状况 A~E分别为大西洋、费乌瑞它、C119、C16和青薯9号处理24 d后结果。T0: CK; T1: 5-azadC; T2: 甘露醇; T3: 5-azadC+甘露醇。每个处理选取3株用于照相。标尺为2 cm。"

表1

不同品种马铃薯各指标对甘露醇和5-azadC分别处理的响应程度"

指标
Index
大西洋
Atlantic
费乌瑞它Favorita C119 C16 青薯9号
Qingshu 9
平均值
Mean
抗旱系数 Coefficients of resistance to drought
鲜重 FW 0.3685 0.3872 0.2977 0.2954 0.7387 0.4175
干重 DW 0.4218 0.6099 0.3273 0.3579 0.7604 0.4955
株高 SH 0.3537 0.4247 0.5353 0.5650 0.2972 0.4352
分枝数 NB 0.2500 0.5455 0.2545 0.4167 0.8889 0.4711
叶片数 NL 0.3421 0.3953 0.3978 0.4359 0.9615 0.5065
总根长 RL 0.7010 0.8807 0.5532 0.7902 0.7817 0.7414
平均根粗 ARD 0.9785 1.0468 0.9003 0.8730 0.9584 0.9514
超氧化物歧化酶 SOD 1.2969 1.2707 1.2415 1.4528 1.8126 1.4149
过氧化物酶 POD 1.2224 1.2177 1.4230 1.4113 2.2462 1.5041
过氧化氢酶 CAT 1.6252 1.7085 1.8966 1.7844 3.5571 2.1144
游离脯氨酸 Pro 1.2920 1.3428 1.6898 1.9928 2.3975 1.7430
丙二醛 MDA 2.9195 2.3183 2.8036 2.1572 1.7162 2.3830
叶绿素 Chl 0.5980 0.8280 0.5491 1.0459 0.9492 0.7940
综合响应系数CRC 0.9515 0.9982 0.9900 1.0445 1.3897 1.0748
指标
Index
大西洋
Atlantic
费乌瑞它Favorita C119 C16 青薯9号
Qingshu 9
平均值
Mean
5-azadC响应系数 Coefficients of response to 5-azadC
鲜重 FW 0.7594 0.7300 0.4364 0.6180 0.3968 0.5881
干重 DW 0.5741 0.7590 0.4719 0.6882 0.4547 0.5896
株高 SH 0.5488 0.5679 0.5620 0.6179 0.6226 0.5839
分枝数 NB 0.5000 0.9091 0.5455 0.8333 0.4444 0.6465
叶片数 NL 0.8333 0.6357 0.6935 0.8462 0.8077 0.7633
总根长 RL 0.8466 0.6714 0.6726 0.8118 0.8412 0.7687
平均根粗 ARD 0.9325 1.1128 0.9718 0.9821 0.9572 0.9913
超氧化物歧化酶 SOD 1.1333 1.1594 1.1133 1.1076 1.5522 1.2131
过氧化物酶 POD 1.0898 1.0486 1.3302 1.1552 1.7649 1.2777
过氧化氢酶 CAT 1.5630 1.5851 1.5766 1.3145 2.1498 1.6378
游离脯氨酸 Pro 1.0258 1.0236 1.2417 1.7473 2.1548 1.4386
丙二醛 MDA 1.1743 1.0931 1.0387 1.1621 0.9300 1.0797
叶绿素 Chl 1.2042 1.7738 0.7249 1.3946 1.3714 1.2938
综合响应系数CRC 0.9373 1.0053 0.8753 1.0214 1.1114 0.9902

图2

不同处理下马铃薯试管苗表型和生理生化指标的变化 显著性分析使用Duncan’s法进行多重比较(P < 0.05)。"

表2

各综合指标特征值及贡献率"

主成分
Principal component
抗旱性 Drought resistance 5-azadC响应性 Response to 5-azadC
PC1 PC2 PC3 PC1 PC2 PC3
特征值 Eigenvalue 8.595 2.460 1.719 6.750 2.757 2.456
贡献率 Contribution rate (%) 66.12 18.92 13.22 51.92 21.20 18.89
累计贡献率 Cumulative contribution rate (%) 66.12 85.04 98.26 51.92 73.12 92.01

表3

各表型因子载荷矩阵"

主成分
Principal component
抗旱性 Drought resistance 5-azadC响应性 Response to 5-azadC
PC1 PC2 PC3 PC1 PC2 PC3
鲜重 FW 0.322 -0.105 0.214 -0.316 -0.114 0.207
干重 DW 0.294 -0.313 0.026 -0.322 0.185 0.288
株高 SH -0.205 0.377 -0.341 0.217 0.201 0.400
分枝数 NB 0.331 -0.092 -0.093 -0.294 0.279 0.210
叶片数 NL 0.332 0.086 0.145 0.159 -0.383 0.415
总根长 RL 0.148 -0.343 -0.546 0.187 -0.291 0.434
平均根粗 ARD 0.039 -0.627 0.022 -0.233 0.479 -0.023
超氧化物歧化酶 SOD 0.327 0.137 0.018 0.327 0.237 0.112
过氧化物酶 POD 0.315 0.179 0.200 0.374 0.138 -0.039
过氧化氢酶 CAT 0.322 0.095 0.221 0.312 0.221 -0.069
游离脯氨酸 Pro 0.273 0.382 -0.027 0.311 0.123 0.290
丙二醛 MDA -0.309 -0.068 0.304 -0.304 -0.319 0.198
叶绿素 Chl 0.214 0.111 -0.571 -0.123 0.364 0.409

表4

供试品种的综合性状指标、权重、μ(X)及综合评价值(D)"

品种
Variety
CI(1) CI(2) CI(3) μ(X1) μ(X2) μ(X3) 综合评价值
Comprehensive
assessment value (D)
综合排名
Order
抗旱性Drought resistance
大西洋 Atlantic -1.9419 -1.0192 0.9505 0.0421 0.2893 0.9236 0.2083 4
费乌瑞它 Favorita -0.4128 -2.0934 -1.0274 0.2524 0.0000 0.2496 0.2035 5
C119 -2.2478 1.3289 1.1746 0.0000 0.9216 1.0000 0.3120 3
C16 -0.4186 1.6201 -1.7600 0.2516 1.0000 0.0000 0.3619 2
青薯9号 Qingshu 9 5.0211 0.1637 0.6623 1.0000 0.6078 0.8254 0.9010 1
权重 Weight 0.6729 0.1926 0.1345
5-azadC响应性Response to 5-azadC
大西洋 Atlantic -0.8022 -2.2132 0.1744 0.2937 0.0000 0.6020 0.2893 5
费乌瑞它 Favorita -2.8667 2.1615 -0.1491 0.0000 1.0000 0.5272 0.3387 4
C119 0.3390 -0.4624 -2.4315 0.4560 0.4002 0.0000 0.3495 3
C16 -0.8330 -0.4878 1.8975 0.2893 0.3944 1.0000 0.4594 2
青薯9号 Qingshu 9 4.1629 1.0020 0.5086 1.0000 0.7350 0.6792 0.8731 1
权重 Weight 0.5643 0.2304 0.2053

表5

甘露醇和5-azadC单独与共同处理下马铃薯试管苗各指标比较分析"

指标
Index
平均值 Mean 变幅 Range
T1/T0 T2/T0 T3/T0 T2/T0 vs. T1/T0 (%) T3/T0 vs. T1/T0 (%) T3/T0 vs. T2/T0 (%)
鲜重 FW 0.417 b 0.589 a 0.316 c -46.40 -29.19 -24.30
干重 DW 0.498 b 0.589 a 0.381 c -35.25 -15.46 -23.41
株高 SH 0.435 b 0.585 a 0.346 c -40.83 -25.54 -20.54
分枝数 NB 0.510 ab 0.697 a 0.339 b -51.37 -26.85 -33.52
叶片数 NL 0.508 b 0.764 a 0.364 c -52.41 -33.55 -28.39
总根长 RL 0.741 a 0.773 a 0.653 b -15.43 -4.05 -11.86
平均根粗 ARD 0.958 a 0.996 a 0.921 a -7.56 -3.84 -3.87
超氧化物歧化酶 SOD 1.426 b 1.221 c 1.656 a 35.63 16.79 16.13
过氧化物酶 POD 1.521 b 1.284 c 1.675 a 30.45 18.46 10.12
过氧化氢酶 CAT 2.190 a 1.691 b 2.570 a 51.98 29.51 17.35
游离脯氨酸 Pro 1.752 a 1.463 b 1.825 a 24.74 19.75 4.17
丙二醛 MDA 2.409 a 1.090 b 2.614 a 139.82 121.01 8.51
叶绿素 Chl 0.795 c 1.262 a 1.165 b -7.69 -37.00 46.54
[1] 陈利洪, 舒帮荣, 李鑫 . 中国干旱半干旱地区农牧业废弃物资源量评价. 干旱区资源与环境, 2018,32(11):9-14.
Chen L H, Shu B R, Li X . Evaluation of agricultural and animal husbandry waste resources in arid and semi-arid areas of China. J Arid Land Resour Environ, 2018,32(11):9-14 (in Chinese with English abstract).
[2] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰 . 西北半干旱区深旋松耕作对马铃薯水分利用和产量的影响. 应用生态学报, 2018,29:3293-3301.
Zhang X C, Ma Y F, Yu X F, Hou H Z, Wang H L, Fang Y J . Effects of vertically rotary sub-soiling tillage on water utilization and yield of potato in semi-arid area of northwest China. Chin J Appl Ecol, 2018,29:3293-3301 (in Chinese with English abstract).
[3] Ramírez D A, Yactayo W, Rens L R, Rolando J L, Palacios S, De Mendiburu F, Mares V, Barreda C, Loayza H, Monneveux P, Zotarelli L . Defining biological thresholds associated to plant water status for monitoring water restriction effects: stomatal conductance and photosynthesis recovery as key indicators in potato. Agric Water Manage, 2016,177:369-378.
[4] 杜康兮, 沈文辉, 董爱武 . 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报, 2018,53:581-593.
Du K X, Shen W H, Dong A W . Advances in epigenetic regulation of abiotic stress response in plants. Chin Bull Bot, 2018,53:581-593 (in Chinese with English abstract).
[5] Ma C, Liang B, Chang B, Liu L, Yan J, Yang Y, Zhao Z . Transcriptome profiling reveals transcriptional regulation by DNA methyltransferase inhibitor 5-Aza-2’-deoxycytidine enhancing red pigmentation in bagged “Granny Smith” apples ( Malus domestica). Int J Mol Sci, 2018,19:3133.
[6] 黄韫宇, 张海军, 邢燕霞, 齐艳, 孙倩倩, 周春蕾, 赵冰, 郭仰东 . NaCl胁迫对黄瓜种子萌发的影响及DNA甲基化的MSAP分析. 中国农业科学, 2013,46:1646-1656.
Huang W Y, Zhang H J, Xing Y X, Qi Y, Sun Q Q, Zhou C L, Zhao B, Guo Y D . Effects of NaCl stress on seed germination and DNA methylation status detected by MSAP analysis in cucumber. Sci Agric Sin, 2013,46:1646-1656 (in Chinese with English abstract).
[7] Kawakatsu T, Huang S S, Jupe F, Sasaki E, Schmitz R J, Urich M A, Castanon R, Nery J R, Barragan C, He Y, Chen H . Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell, 2016,166:492-505.
[8] Rathore M S, Jha B . DNA methylation and methylation polymorphism in genetically stable in vitro regenerates of Jatropha curcas L. using methylation-sensitive AFLP markers. Appl Biochem Biotechnol, 2016,178:1002-1014.
[9] Khan A, Yadav N S, Morgenstern Y, Zemach A, Grafi G . Activation of Tag1 transposable elements in Arabidopsis dedifferentiating cells and their regulation by CHROMOMETHYLASE 3-mediated CHG methylation. BBA-Gene Regul Mech, 2016,1859:1289-1298.
[10] 潘雅姣, 傅彬英, 王迪, 朱苓华, 黎志康 . 水稻干旱胁迫诱导DNA甲基化时空变化特征分析. 中国农业科学, 2009,42:3009-3018.
Pan Y J, Fu B Y, Wang D, Zhu L H, Li Z K . Spatial and temporal profiling of DNA methylation induced by drought stress in rice. Sci Agric Sin, 2009,42:3009-3018 (in Chinese with English abstract).
[11] Kottler E J, Vanwallendael A, Franks S J . Experimental treatment with a hypomethylating agent alters life history traits and fitness in brassica rapa. J Bot, 2018,2018:1-10.
[12] 许嵘, 张文州, 陈琳琳, 丁小明, 谢志新, 林阳君, 辛军 . DNA去甲基化药物作用机制的研究进展. 现代药物与临床, 2017,32(1):152-157.
Xu R, Zhang W Z, Chen L L, Ding X M, Xie Z X, Lin Y J, Xin J . Research progress on action mechanism of DNA demethylating agents. Drugs Clinic, 2017,32(1):152-157 (in Chinese with English abstract).
[13] 毛锐涛 . 马铃薯甲基转移酶和去甲基化酶预测及表达研究. 内蒙古大学硕士学位论文, 内蒙古呼和浩特, 2014.
Mao R T . Phylogenetics and Expression of Methyltransferases and Demethylases in Potato. MS Thesis of Inner Mongolia University, Hohhot, Inner Mongolia, China, 2014 (in Chinese with English abstract).
[14] Zhong L, Xu Y H, Wang J B . The effect of 5-azacytidine on wheat seedlings responses to NaCl stress. Biol Planta, 2010,54:753-756.
[15] Law R D, Suttle J C . Transient decreases in methylation at 5'-CCGG-3' sequences in potato ( Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol Biol, 2003,51:437-447.
[16] 李媛媛, 程鹏, 熊兴耀, 洪亚辉 . 干旱胁迫下马铃薯幼苗DNA甲基化变化研究. 中国马铃薯, 2012,26:11-16.
Li Y Y, Cheng P, Xiong X Y, Hong Y H . DNA methylation in potato under drought stress. Chin Potato J, 2012,26:11-16 (in Chinese with English abstract).
[17] 李媛媛 . 干旱胁迫下马铃薯苗基因组甲基化变化情况及生理生化变化研究. 湖南农业大学硕士学位论文, 湖南长沙, 2011.
Li Y Y . Studies on Methylation and Physiological Alterations under Drought Stress in Potato. MS Thesis of Hunan Agricultural University, Changsha, China, 2011 (in Chinese with English abstract).
[18] 王芳, 石茹, 王舰 . 马铃薯茎尖玻璃化法超低温保存后DNA甲基化的遗传变异. 分子植物育种, 2013,11:351-357.
Wang F, Shi R, Wang J . Genetic variation of DNA methylation in potato shoot tips after the cryopreservation by vitrification approach. Mol Plant Breed, 2013,11:351-357 (in Chinese with English abstract).
[19] Arnon D I . Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949,24:1-15.
[20] 王学奎, 黄见良 . 植物生理生化实验原理与技术(第3版). 北京: 高等教育出版社, 2015. pp 131-287.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological Biochemical Experiment, 3rd edn. Beijing: Higher Education Press, 2015. pp 131-287(in Chinese).
[21] Zhang H, Lang Z, Zhu J K . Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol, 2018,19:489-506.
[22] 李艳, 钱伟强 . 植物中DNA甲基化及去甲基化研究进展. 生命科学, 2017, ( 3):302-309.
Li Y, Qian W Q . Mechanisms of DNA methylation and demethylation in plants. Chin Bull Life Sci, 2017, ( 3):302-309 (in Chinese with English abstract).
[23] Akimoto K, Katakami H, Kim H J, Ogawa E, Sano C M, Wada Y, Sano H . Epigenetic inheritance in rice plants. Ann Bot, 2007,100:205-217.
[24] Marfil C F, Asurmendi S, Masuelli R W . Changes in micro RNA expression in a wild tuber-bearing Solanum species induced by 5-azacytidine treatment. Plant Cell Rep, 2012,31:1449-1461.
[25] 郝小琴, 姚鹏鹤, 高峥荣, 吴子恺 . 低温胁迫对微胚乳超甜超高油玉米耐寒性生理生化特性的影响. 作物学报, 2014,40:1470-1484.
Hao X Q, Yao P H, Gao Z R, Wu Z K . Effects of low temperature stress on the physiological and biochemical characteristics of cold tolerance in micro-endosperm super sweet and super high oil maize. Acta Agron Sin, 2014,40:1470-1484 (in Chinese with English abstract).
[26] 徐宁, 陈冰嬬, 王明海, 包淑英, 王桂芳, 郭中校 . 绿豆品种资源萌发期耐碱性鉴定. 作物学报, 2017,43:112-121.
Xu N, Chen B R, Wang M H, Bao S Y, Wang G F, Guo Z X . Identification of alkali tolerance of mungbean germplasm resources during germination. Acta Agron Sin, 2017,43:112-121 (in Chinese with English abstract).
[27] 杨宏羽, 平海涛, 王蒂, 王丽, 刘玉汇, 白江平, 余斌, 张俊莲 . 不同倍性马铃薯品种的抗旱性. 中国沙漠, 2016,36:1041-1049.
Yang H Y, Ping H T, Wang D, Wang L, Liu Y H, Bai J P, Yu B, Zhang J L . Drought resistance of different ploidy potato varieties. J Desert Res, 2016,36:1041-1049 (in Chinese with English abstract).
[28] Al-Lawati A, Al-Bahry S, Victor R, Al-Lawati A H, Yaish M W . Salt stress alters DNA methylation levels in alfalfa ( Medicago spp.). Genet Mol Res, 2016,15:15018299.
[29] 黄玉兰, 殷奎德, 向君亮, 徐业梅, 刘兆兵, 丰经书, 任海娟 . 干旱胁迫下植物生理生化及DNA甲基化的研究进展. 玉米科学, 2016,24(2):96-102.
Huang Y L, Yin K D, Xiang Y L, Xu Y M, Liu Z B, Feng J S, Ren H J . Research progress on physiological reaction and DNA methylation under drought stress in plant. J Maize Sci, 2016,24(2):96-102 (in Chinese with English abstract).
[30] 钟兰 . 盐胁迫下小麦幼苗的生理生化特性及表观遗传学研究. 武汉大学博士学位论文, 湖北武汉, 2009.
Zhong L . Studies on the Physio-biochemical Properties and Epigenetics of Seedlings of Wheat under Salt Stress. PhD Dissertation of Wuhan University. Wuhan, Hubei, China, 2009 (in Chinese with English abstract).
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[9] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[10] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[11] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[12] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[15] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!