欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 307-314.doi: 10.3724/SP.J.1006.2020.91039

• 研究简报 • 上一篇    

基于SNP标记揭示我国小麦品种(系)的遗传多样性

刘易科1,朱展望1,陈泠1,邹娟1,2,佟汉文1,朱光1,何伟杰1,张宇庆1,高春保1,2,*()   

  1. 1 湖北省农业科学院粮食作物研究所 / 农业部华中地区小麦病害生物学科学观测实验站 / 湖北省小麦工程技术研究中心, 湖北武汉430064
    2 主要粮食作物产业化湖北省协同创新中心 / 长江大学, 湖北荆州 434025
  • 收稿日期:2019-06-03 接受日期:2019-08-09 出版日期:2020-02-12 网络出版日期:2019-09-11
  • 通讯作者: 高春保
  • 作者简介:E-mail: hbliuyk@foxmail.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100802);湖北省技术创新专项(2018ABA085);国家小麦产业技术体系“武汉综合试验站”(CARS-03);湖北省农业科技创新中心项目资助

Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers

LIU Yi-Ke1,ZHU Zhan-Wang1,CHEN Ling1,ZOU Juan1,2,TONG Han-Wen1,ZHU Guang1,HE Wei-Jie1,ZHANG Yu-Qing1,GAO Chun-Bao1,2,*()   

  1. 1 Food Crops Institute, Hubei Academy of Agricultural Sciences / Wheat Disease Biology Research Station on Central China, Ministry of Agriculture, China / Hubei Engineering and Technology Research Center of Wheat, Wuhan 430064, Hubei, China
    2 Hubei Collaborative Innovation Center for Grain Industry / Yangtze University, Jingzhou 434025, Hubei China
  • Received:2019-06-03 Accepted:2019-08-09 Published:2020-02-12 Published online:2019-09-11
  • Contact: Chun-Bao GAO
  • Supported by:
    The work was supported by the National Key Research and Development Program(2017YFD0100802);the Hubei Technical Innovation Project(2018ABA085);the Modern Agro-Industry Technology Research Systems(CARS-03);the Hubei Agricultural Science and Technology Innovation Center Project

摘要:

为了解我国主要小麦品种(系)的遗传多样性, 为亲本组配提供参考, 利用90K SNP芯片技术对国内为主的240个小麦品种(系)进行全基因组扫描, 分析其遗传多样性和遗传基础。结果表明, 多态性SNP位点在B基因组最多, D基因组最最少, 尤其4D上最少; 在全基因组范围内PIC平均值为0.26。参试品种间平均遗传相似系数为0.656, 变幅为0.133~0.998, 且87.05%品种间遗传相似系数在0.60~0.78之间; 国内西南麦区和长江中下游麦区小麦品种(系)间的平均相似系数较高, 分别为0.718和0.712, 国外品种(系)间的相似系数最低, 为0.552。聚类分析将参试品种(系)划分为7个类群, 大部分类群含有来自不同区域育成品种(系), 主成分分析显示各区域育成的品种(系)相互交集, 表明我国各省市间种质资源交流较为频繁, 但部分单位育成的品种(系)遗传基础不够丰富, 部分品种(系)间遗传相似性较高, 在育种中亟待引入新的种质, 拓宽遗传基础。

关键词: 小麦, 品种, 遗传多样性, SNP

Abstract:

In order to understand the genetic diversity of major wheat cultivars (lines) in China and provide a reference for parent selection, we selected 240 domestically dominated wheat cultivars (lines) for SNP genotyping using the Illumina 90K iSelect SNP chip. The SNP loci were the most in the B genome, and were the least in the D genome, especially in 4D. The mean value of the polymorphism information content (PIC) was 0.26. The genetic similarity of the 240 cultivars (lines) ranged from 0.133 to 0.998 with an average value of 0.656. However, genetic similarity of 0.60 to 0.78 was found in 87.05% of the tested cultivars (lines). The genetic similarity was up to 0.718 between Southwest Wheat Region cultivars (lines), 0.712 between Middle and Low Yangtze Valleys Wheat Region, and 0.552 between foreign cultivars (lines). The 240 wheat cultivars (lines) were classified into seven groups by UPGMA analyses, most of them contained varieties (lines) bred from different regions. Principal component analysis (PCA) showed that the cultivars (lines) bred in different regions intersected together. The exchange of germplasm resources among different regions in China was frequent, but the genetic basis of the cultivars (lines) bred by some units was not rich enough and the genetic similarity between some varieties (lines) was higher. It is urgent to introduce new germplasm and broaden the genetic basis in breeding.

Key words: wheat, cultivars, genetic diversity, SNPs

附表1

用于SNP分析的小麦品种(系)"

序号 品种 麦区 序号 品种 麦区 序号 品种 麦区
4 川麦42 西南麦区 37 周麦23 黄淮南片 239 淮麦18 黄淮南片
16 内麦8号 西南麦区 42 众麦1号 黄淮南片 25 济麦20 黄淮北片
18 绵阳99-7 西南麦区 44 洛麦21 黄淮南片 32 烟农22 黄淮北片
23 绵麦42 西南麦区 45 豫麦49-168 黄淮南片 33 青丰1号 黄淮北片
38 绵麦1403 西南麦区 47 项麦99 黄淮南片 43 科农9204 黄淮北片
39 西科麦4号 西南麦区 48 皖麦52 黄淮南片 53 山东664 黄淮北片
40 XK0106-1-0806 西南麦区 49 周麦22 黄淮南片 54 山农189 黄淮北片
56 川麦50 西南麦区 51 周麦16 黄淮南片 60 烟农24 黄淮北片
61 川麦52 西南麦区 52 豫农202 黄淮南片 64 泰山21 黄淮北片
62 西科麦2号 西南麦区 55 豫麦52 黄淮南片 67 临汾138 黄淮北片
83 川麦51 西南麦区 57 新麦18 黄淮南片 68 邯3475 黄淮北片
138 西科麦5号 西南麦区 65 西农979 黄淮南片 69 邯6172 黄淮北片
199 川农42 西南麦区 71 荔垦2号 黄淮南片 70 冀麦30 黄淮北片
211 绵麦37 西南麦区 72 徐麦29 黄淮南片 75 烟5158 黄淮北片
212 川麦43 西南麦区 73 温麦6号 黄淮南片 76 临Y867 黄淮北片
215 绵麦185 西南麦区 74 新麦20 黄淮南片 78 济宁16号 黄淮北片
226 绵阳99-3 西南麦区 79 陕715 黄淮南片 85 科农199 黄淮北片
1 鄂麦596 长江中下游麦区 80 皖麦38 黄淮南片 87 良星99 黄淮北片
2 扬05-117 长江中下游麦区 81 温麦7号 黄淮南片 91 烟农19 黄淮北片
6 鄂麦27 长江中下游麦区 82 豫麦48 黄淮南片 92 长6359 黄淮北片
7 扬06-144 长江中下游麦区 84 新麦22 黄淮南片 98 临汾137 黄淮北片
13 荆辐麦1号 长江中下游麦区 86 连麦1号 黄淮南片 103 冀麦38 黄淮北片
14 扬麦12 长江中下游麦区 88 双抗7438 黄淮南片 107 石家庄8号 黄淮北片
21 鄂恩1号 长江中下游麦区 93 西农3517 黄淮南片 110 济麦21 黄淮北片
28 鄂麦580 长江中下游麦区 96 洛早7 黄淮南片 143 邯5316 黄淮北片
29 CJ9306 长江中下游麦区 100 温麦18 黄淮南片 145 潍麦8号 黄淮北片
30 襄麦55 长江中下游麦区 101 温麦19 黄淮南片 149 泰农18 黄淮北片
36 鄂恩6号 长江中下游麦区 106 郑麦9023 黄淮南片 150 山农16 黄淮北片
41 扬06G5 长江中下游麦区 109 西农9871 黄淮南片 152 衡观115 黄淮北片
58 宁7840 长江中下游麦区 112 新麦11 黄淮南片 156 衡观4422 黄淮北片
59 扬麦158 长江中下游麦区 113 淮麦20 黄淮南片 164 荷麦13 黄淮北片
66 扬07-49 长江中下游麦区 115 漯6010 黄淮南片 165 泰农142 黄淮北片
77 鄂麦23 长江中下游麦区 116 新麦9817 黄淮南片 177 临Y7287 黄淮北片
89 镇麦6号 长江中下游麦区 117 新麦13 黄淮南片 179 济麦22 黄淮北片
95 宁麦16 长江中下游麦区 119 陕麦150 黄淮南片 180 山农15 黄淮北片
97 鄂恩5号 长江中下游麦区 120 周麦18 黄淮南片 184 临优2069 黄淮北片
102 镇麦5号 长江中下游麦区 122 豫农035 黄淮南片 191 烟5286 黄淮北片
105 鄂麦12 长江中下游麦区 126 小偃6号 黄淮南片 192 衡观35 黄淮北片
111 扬06G86 长江中下游麦区 128 郑育麦9987 黄淮南片 194 衡观136 黄淮北片
118 扬06-164 长江中下游麦区 130 洛新998 黄淮南片 200 烟农21 黄淮北片
123 扬麦15 长江中下游麦区 132 泛麦5号 黄淮南片 203 济麦17 黄淮北片
124 华2533 长江中下游麦区 136 漯4-168 黄淮南片 209 鲁麦21号 黄淮北片
125 宁麦13 长江中下游麦区 139 新1817 黄淮南片 213 济南17 黄淮北片
127 扬07-129 长江中下游麦区 140 许科1号 黄淮南片 217 济麦19 黄淮北片
131 扬07-44 长江中下游麦区 142 郑麦004 黄淮南片 219 山农8355 黄淮北片
133 苏麦3号 长江中下游麦区 147 陕麦139 黄淮南片 221 烟2415 黄淮北片
134 华2566 长江中下游麦区 148 04中36 黄淮南片 227 鲁农116 黄淮北片
137 宁麦9号 长江中下游麦区 151 西农2000 黄淮南片 232 泰山23 黄淮北片
141 宁麦8号 长江中下游麦区 154 豫麦49-198 黄淮南片 8 兰天13 北部麦区
146 镇麦168 长江中下游麦区 155 豫麦69 黄淮南片 9 兰天17号 北部麦区
157 扬麦13 长江中下游麦区 161 郑麦98 黄淮南片 15 宁春47号 北部麦区
158 襄麦25 长江中下游麦区 162 新9817 黄淮南片 24 宁冬11号 北部麦区
160 扬07-15 长江中下游麦区 163 矮早781-99 黄淮南片 46 兰天23号 北部麦区
167 鄂麦11 长江中下游麦区 168 小偃166 黄淮南片 50 宁冬10号 北部麦区
170 扬麦14 长江中下游麦区 169 连麦2号 黄淮南片 94 兰天18号 北部麦区
171 鄂352 长江中下游麦区 172 郑麦366 黄淮南片 104 兰天15号 北部麦区
174 荆州66 长江中下游麦区 173 西农88 黄淮南片 108 京冬17 北部麦区
175 鄂麦18 长江中下游麦区 176 陕农78 黄淮南片 121 北京0045 北部麦区
181 扬辐麦2号 长江中下游麦区 182 陕农757 黄淮南片 129 中麦12号 北部麦区
183 扬麦16 长江中下游麦区 186 陕159 黄淮南片 144 中农2号 北部麦区
185 扬麦11 长江中下游麦区 188 郑农17 黄淮南片 178 轮选987 北部麦区
198 荆麦103 长江中下游麦区 190 豫麦70 黄淮南片 187 京冬8号 北部麦区
204 鄂07901 长江中下游麦区 193 开麦18 黄淮南片 214 兰天12 北部麦区
207 扬麦17 长江中下游麦区 195 豫麦10号 黄淮南片 216 兰天21号 北部麦区
231 Wuhan 1 长江中下游麦区 196 洛早2 黄淮南片 218 兰天00-30 北部麦区
233 宁麦11 长江中下游麦区 197 平安3号 黄淮南片 225 宁春4号 北部麦区
240 扬07-81 长江中下游麦区 201 百农160 黄淮南片 230 宁春43号 北部麦区
3 偃展4110 黄淮南片 202 陕627 黄淮南片 234 兰天22号 北部麦区
5 陕农138 黄淮南片 205 小偃107 黄淮南片 237 中麦9号 北部麦区
11 洛早6 黄淮南片 206 豫麦38 黄淮南片 10 SYN1 国外
12 小偃22 黄淮南片 208 新麦19 黄淮南片 63 14FHBSN6404 国外
17 新麦16 黄淮南片 210 淮麦17 黄淮南片 90 14FHBSN6418 国外
19 平安6号 黄淮南片 220 中育10号 黄淮南片 99 14FHBSN6405 国外
20 金丰3号 黄淮南片 222 陕253 黄淮南片 114 14FHBSN6402 国外
22 豫麦70-36 黄淮南片 223 陕麦175 黄淮南片 135 GAMENYA 国外
26 郑麦9094 黄淮南片 224 新麦208 黄淮南片 153 14FHBSN6409 国外
27 郑育麦958 黄淮南片 228 皖麦50 黄淮南片 159 Ocoroni 国外
31 科大9612 黄淮南片 229 矮抗58 黄淮南片 166 14FHBSN6411 国外
34 徐麦27 黄淮南片 236 徐麦216 黄淮南片 189 14FHBSN6408 国外
35 周麦17 黄淮南片 238 濮麦10号 黄淮南片 235 Mayoor 国外

图1

多态性SNP位点在染色体(A)和同源群(B)上的分布"

图2

SNP标记在240份小麦材料中多态性信息含量(PIC)的分布"

表1

不同地区育成品种(系)的遗传相似系数"

地区
Region
品种数
No. of varieties
遗传相似系数 Genetic similarity
变幅 Range 均值 Average
西南麦区 Wheat region of southwest China 17 0.609-0.983 0.718
长江中下游麦区Wheat region of the middle and lower reaches of Yangtze River 50 0.161-0.998 0.712
黄淮南片 Wheat region of South Huang-Huai 94 0.146-0.998 0.686
黄淮北片 Wheat region of North Huang-Huai 47 0.559-0.991 0.680
北部麦区 Wheat region of Northern China 21 0.538-0.989 0.660
国外 Abroad 11 0.262-0.861 0.552
总计Total 240 0.133-0.998 0.656

图3

240个品种(系)间遗传相似系数的次数分布"

图4

基于SNP标记的240个小麦品种(系)的聚类图"

图5

基于SNP标记的240个小麦品种(系)主成分分析 A为西南麦区品种, B为长江中下游麦区品种, C为黄淮南片品种, D为黄淮北片品种, E为北部麦区品种, F为国外品种。"

[1] Govindaraj M, Vetriventhan M, Srinivasan M . Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet Res Internat, 2015,2015:1-14.
doi: 10.1155/2015/431487 pmid: 25874132
[2] 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才 . 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018,19:430-434.
Liu Z Y, Wang D W, Zhang A M, Liang H W, Lyu H Y, Deng X D, Ge Y Q, Wei X, Yang W C . Current status and perspective of wheat genomics, genetics and breeding. J Plant Genet Resour, 2018,19:430-434 (in Chinese with English abstract).
[3] 何中虎, 夏先春, 陈新民, 庄巧生 . 中国小麦育种进展与展望. 作物学报, 2011,37:202-215.
doi: 10.3724/SP.J.1006.2011.00202
He Z H, Xia X C, Chen X M, Zhuang Q S . Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011,37:202-215 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00202
[4] 徐鑫, 李小军 . 小麦骨干亲本研究进展. 河南农业科学, 2012,41(2):5-8.
Xu X, Li X J . Research progress of founder parents in wheat. J Henan Agric Sci, 2012,41(2):5-8 (in Chinese with English abstract).
[5] Peterson G W, Dong Y, Horbach C, Fu Y B . Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity, 2014,6:665-680.
doi: 10.3390/d6040665
[6] Royo C, Elias E M, Manthey F A. Durum wheat breeding. In: Carena M J, ed. Cereals-Handbook of Plant Breeding. Berlin: Springer, 2009. pp 199-266.
[7] Ren J, Chen L, Sun D, You F M, Wang J, Peng Y, Nevo E, Beiles A, Sun D, Luo M C, Peng J . SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol Biol, 2013,13:169.
doi: 10.1186/1471-2148-13-169 pmid: 23937410
[8] Chao S, Dubcovsky J, Dvorak J, Luo M C, Baenziger S P, Matnyazov R, Clark D R, Talbert L E, Anderson J A, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner P L, Rudd J C, Haley S, Carver B F, Perry S, Sorrells M E, Akhunov E D . Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom, 2010,11:727.
doi: 10.1186/1471-2164-11-727 pmid: 21190581
[9] Wurschum T, Langer S M, Longin C F, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C . Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet, 2013,126:1477-1486.
doi: 10.1007/s00122-013-2065-1
[10] 曹廷杰, 谢菁忠, 吴秋红, 陈永兴, 王振忠, 赵虹, 王西成, 詹克慧, 徐如强, 王际睿, 罗明成, 刘志勇 . 河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析. 作物学报, 2015,41:197-206.
doi: 10.3724/SP.J.1006.2015.00197
Cao Y J, Xie Q Z, Wu Q H, Chen Y X, Wang Z Z, Zhao H, Wang X C, Zhan K H, Xu R Q, Wang J R, Luo M C, Liu Z Y . Genetic diversity of registered wheat varieties in Henan province based on pedigree and single-nucleotide polymorphism. Acta Agron Sin, 2015,41:197-206 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00197
[11] Baloch F S, Alsaleh A, Shahid M Q, Çiftçi V, Miera L E S, Aasim M, Nadeem M A, Aktaş H, Özkan H, Hatipoğlu R . A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One, 2017,12:e0167821.
doi: 10.1371/journal.pone.0167821 pmid: 28099442
[12] 宋晓朋 . 黄淮麦区小麦品种遗传多样性及分子标记与性状的关联分析. 西北农林大学硕士学位论文, 陕西杨凌, 2016.
Song X M . The Analysis of Genetic Diversity and Study Markers Associated with Traits in Huang-Huai Winter Wheat. MS Thesis of Northwest A&F University, Yangling, Shaanxi,China, 2016 (in Chinese with English abstract).
[13] Joukhadar R, Daetwyler H D, Bansal U K, Gendall A R, Hayden M J . Genetic diversity, population structure and ancestral origin of Australian wheat. Front Plant Sci, 2017,8:2115.
doi: 10.3389/fpls.2017.02115 pmid: 29312381
[14] Turuspekov Y, Plieske J, Ganal M, Akhunov E, Abugalieva S . Phylogenetic analysis of wheat cultivars in Kazakhstan based on the wheat 90 K single nucleotide polymorphism array. Plant Genet Resour, 2017,15:29-35.
doi: 10.1017/S1479262115000325
[15] Müller T, Schierscher-Viret B, Fossati D, Brabant C, Schori A, Keller B . Unlocking the diversity of GeneBanks: whole-genome marker analysis of Swiss bread wheat and spelt. Theor Appl Genet, 2018,131:407-416.
doi: 10.1007/s00122-017-3010-5 pmid: 29103142
[16] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W . Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984,81:8014-8018.
doi: 10.1073/pnas.81.24.8014 pmid: 6096873
[17] Wang S C, Wong D, Forrest K, Allen A, Chao S M, Huang B E, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J . Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J, 2014,12:787-796.
doi: 10.1111/pbi.12183
[18] 郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生 . 我国育成小麦品种的遗传多样性演变. 中国科学C辑, 2005,35:408-415
Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z, Liu X, Shang X W, Liu S C, Cao Y S . Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Sci China: Series C, 2005,35:408-415 (in Chinese with English abstract).
[19] 蒲艳艳, 程凯, 李斯深 . 山东省近期育成小麦品种遗传多样性的SSR分析. 分子植物育种, 2011,9:443-449.
Pu Y Y, Cheng K, Li S S . Genetic diversity of recent wheat cultivars in Shandong province using SSR markers. Mol Plant Breed, 2011,9:443-449 (in Chinese with English abstract).
[20] 李志波, 王睿辉, 张茶, 梁虹, 马峙英, 赵玉欣, 王静华 . 河北省小麦品种基于农艺性状的遗传多样性分析. 植物遗传资源学报, 2009,10:436-442.
Li Z B, Wang R H, Zhang C, Liang H, Ma Z Y, Zhao Y X, Wang J H . Genetic diversity analysis of bread wheat (Triticum aestivum L.) cultivars in Hebei province based on agronomic traits. J Plant Genet Resour, 2009,10:436-442 (in Chinese with English abstract).
[21] 傅体华, 王春梅, 任正隆 . 四川育成小麦品种的SSR 遗传多态性及系谱关系. 四川农业大学学报, 2007,25:1-7.
Fu T H, Wang C M, Ren Z L . SSR genetic diversity among modern advanced wheat cultivars (Triticum aestivum L.) in Sichuan and its relationships with their pedigree. J Sichuan Agric Univ, 2007,25:1-7 (in Chinese with English abstract).
[22] 李学军, 潘玉朋, 王小利, 李立群, 王培, 冯毅, 王辉 . 陕西育成小麦品种的遗传多样性演变. 西北农林科技大学学报(自然科学版), 2011,39:48-54.
Li X J, Pan Y P, Wang X L, Li L Q, Wang P, Feng Y, Wang H . Evolution of genetic diversity of the winter varieties grown at Shaanxi. J Northwest A&F Univ (Nat Sci Edn), 2011,39:48-54 (in Chinese with English abstract).
[23] 潘玉朋, 李立群, 郑锦娟, 王培, 冯毅, 李学军 . 黄淮麦区近年大面积推广小麦品种的遗传多样性分析. 西北农业学报, 2011,20:47-52.
Pan Y P, Li L Q, Zheng J J, Wang P, Feng Y, Li X J . Analysis of genetic diversity of the large-scale promoted wheat varieties grown at Huang-Huai area in recent years. Acta Agric Boreali-Occident Sin, 2011,20:47-52 (in Chinese with English abstract).
[24] 刘丽华, 庞斌双, 刘阳娜, 邱军, 李宏博, 张欣, 王娜, 赵昌平 . 2009-2014年国家冬小麦区域试验品系的遗传多样性及群体结构分析. 麦类作物学报, 2016,36:165-171.
Liu L H, Pang B S, Liu Y N, Qiu J, Li H B, Zhang X, Wang N, Zhao C P . Genetic diversity and population structure analysis of winter wheat lines from recent national regional trials in China. J Trit Crops, 2016, 36:165-171.
[25] 孙道杰, 张玲丽, 冯毅, 陈春环, 张荣琦, 奚亚军, 何心尧, 王辉, 宋哲民 . 西农系列小麦骨干新品种赤霉病抗源浅析. 麦类作物学报, 2016,36:822-823.
Sun D J, Zhang L L, Feng Y, Chen C H, Zhang R Q, Xi Y J, He X Y, Wang H, Song Z M . Analysis of FHB resistance sources for newly released Xinong varieties. J Trit Crops, 2016, 36:822-823 (in Chinese with English abstract).
[26] 袁汉民, 裘志新, 陈东升, 袁海燕, 王晓亮, 张富国, 赵桂珍, 汤忠 . 小麦种质资源宁春4号的研究和利用. 麦类作物学报, 2009,29:160-165.
Yuan H M, Qiu Z X, Chen D S, Yuan H Y, Wang X L, Zhang G F, Zhao G Z, Tang Z . Study and utilization of wheat germplasm ‘Ningchun 4’. J Trit Crops, 2009,29:160-165 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[5] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[8] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[9] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[10] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[11] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[12] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[15] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!