欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (3): 494-506.doi: 10.3724/SP.J.1006.2021.04070

• 耕作栽培·生理生化 • 上一篇    下一篇

幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响

项洪涛1, 李琬1, 郑殿峰2,3,*(), 王诗雅3, 何宁1, 王曼力1, 杨纯杰1   

  1. 1黑龙江省农业科学院耕作栽培研究所, 黑龙江哈尔滨 150086
    2广东海洋大学滨海农业学院, 广东湛江 524088
    3黑龙江八一农垦大学农学院, 黑龙江大庆 163319
  • 收稿日期:2020-03-17 接受日期:2020-10-14 出版日期:2021-03-12 网络出版日期:2020-11-06
  • 通讯作者: 郑殿峰
  • 作者简介:E-mail: xianght@163.com
  • 基金资助:
    国家自然科学基金项目(31871576);国家现代农业产业技术体系建设专项资助(CARS-08-04B)

Effects of uniconazole and waterlogging stress in seedling stage on the physio logy and yield in adzuki bean

XIANG Hong-Tao1, LI Wan1, ZHENG Dian-Feng2,3,*(), WANG Shi-Ya3, HE Ning1, WANG Man-Li1, YANG Chun-Jie1   

  1. 1Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    2College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
    3College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China
  • Received:2020-03-17 Accepted:2020-10-14 Published:2021-03-12 Published online:2020-11-06
  • Contact: ZHENG Dian-Feng
  • Supported by:
    National Natural Science Foundation of China(31871576);China Agriculture Research System(CARS-08-04B)

摘要:

为探究幼苗期淹水胁迫及喷施烯效唑(S3307)对小豆(Vigna angularis)生理代谢和产量的影响, 本研究于2018—2019年以龙小豆4号和天津红为试验材料, 盆栽条件下, 苗期进行预喷施S3307, 同时连续淹水处理5 d并每天取样, 测定分析相关生理指标。结果表明, 幼苗期淹水胁迫引起小豆叶片H2O2和MDA含量、脯氨酸和可溶性蛋白含量显著提高, ABA、IAA和SA含量显著提高, SOD、POD和CAT活性显著提高, 淹水处理5 d导致龙小豆4号单盆产量显著下降8.40%~12.61%, 天津红显著下降9.91%~10.01%。S3307具有抵御淹水胁迫的作用, 能有效增加小豆叶片脯氨酸和可溶性蛋白含量, 显著降低H2O2和MDA含量, 能够显著提高SOD和POD活性以及SOD/POD、SOD/CAT, 显著增加ABA和SA含量, 并显著抑制IAA含量的上升。喷施S3307使淹水4 d的龙小豆4号产量显著提高2.85%~6.18%, 使天津红淹水4 d的产量显著提高2.85%~3.95%。综上, 淹水胁迫下, 不同品种小豆在活性氧物质积累、膜质过氧化、抗氧化酶活性以及激素水平等方面的生理应激存在显著差异; 喷施S3307能够有效缓解淹水胁迫对小豆生理和产量的影响。本研究结果为进一步研究小豆苗期抵御淹水胁迫的生理机制及提高淹水胁迫下小豆的产量提供理论依据。

关键词: S3307, 小豆, 淹水胁迫, 叶片生理, 产量

Abstract:

In order to explore the difference on the resistance physiology and yield and the mitigation effect of uniconazole (S3307) pretreatment under waterlogging stress, the pot experiment was conducted using Longxiaodou 4 (LXD 4) and Tianjinhong (TJH). The anti-stress physiological indexes and yield were measured on 5th day after waterlogging stress and foliar spraying S3307 at seedling stage, and samples were taken every day. The results showed that leaf physiological indexes in waterlogging stress were changed during seedling stage, the content of H2O2, MDA, proline and soluble protein were significantly increased, as the same as the content of ABA, IAA, and SA, and the activities of SOD, POD, and CAT. Waterlogging treatment for five days resulted in a significant decrease in the output of LXD 4 in a single pot by 8.40% to 12.61%, and that of TJH decreased by 9.91% to 10.01%. S3307 had the effect of resisting waterlogging stress, and could effectively increase the content of proline and soluble protein in the leaf of adzuki bean, significantly reduced the content of H2O2 and MDA, significantly increased the activity of SOD and POD, the value of SOD/POD and SOD/CAT, significantly increased the ABA and SA content, and significantly inhibited the increase in IAA content. Foliar spraying S3307 significantly increased the output of LXD 4 by 2.85% to 6.18% under waterlogging treatment for four days, and significantly increased the yield of TJH by 2.85% to 3.95%, respectively. This study concluded that there were significant differences under physiological stress in reactive oxygen species accumulation, membrane lipid peroxidation, antioxidant enzyme activities and hormone levels among different varieties of adzuki bean under waterlogging stress. Spraying S3307 could effectively alleviate the effects of waterlogging stress on the physiology and yield in adzuki bean. The results provide a theoretical basis for further studying the physiological mechanism of adzuki bean resistance to waterlogging at the seedling stage and improving the yield of adzuki bean under waterlogging stress.

Key words: uniconazole (S3307), adzuki bean, waterlogging stress, leaf physiology, yield

表1

试验设计方案"

品种
Variety
处理编号
Treatment code
药剂处理
Pesticide treatment
水分处理
Water treatment
龙小豆4号
Longxiaodou 4
T1 蒸馏水喷施 Spray water 正常土壤水分 Suitable soil moisture
T2 蒸馏水喷施 Spray water 淹水胁迫 Waterlogging stress
T3 S3307喷施 Spray S3307 淹水胁迫 Waterlogging stress
天津红
Tianjinhong
T4 蒸馏水喷施 Spray water 正常土壤水分 Suitable soil moisture
T5 蒸馏水喷施 Spray water 淹水胁迫 Waterlogging stress
T6 S3307喷施 Spray S3307 淹水胁迫 Waterlogging stress

图1

淹水胁迫及喷施S3307对小豆幼苗叶片H2O2含量的影响 T1 or T4: 幼苗期正常土壤水分, 喷施蒸馏水, 即对照; T2 or T5: 幼苗期土壤淹水胁迫, 喷施蒸馏水; T3 or T6: 幼苗期土壤淹水胁迫, 喷施S3307。其中T1~T3对应龙小豆4号, T4~T6对应天津红。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图2

淹水胁迫及喷施S3307对小豆幼苗叶片MDA含量的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图3

淹水胁迫及喷施S3307对小豆幼苗叶片SOD活性的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图4

淹水胁迫及喷施S3307对小豆幼苗叶片POD活性的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图5

淹水胁迫及喷施S3307对小豆幼苗叶片CAT活性的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

表2

淹水胁迫及喷施S3307对小豆幼苗叶片SOD/POD的影响"

品种
Variety
处理
Treatment
淹水天数 Waterlogging days
1 d 2 d 3 d 4 d 5 d
龙小豆4号
Longxiaodou 4
T1 71.43±3.70 a 76.65±5.62 a 70.91±1.37 a 70.97±1.49 a 70.88±2.33 a
T2 64.85±3.50 ab 59.38±1.44 b 57.22±0.60 b 46.99±1.72 b 69.44±4.17 a
T3 58.03±0.97 b 57.57±0.46 b 47.35±0.06 c 34.44±2.03 c 55.08±1.84 b
天津红
Tianjinhong
T4 110.40±0.69 a 114.73±5.30 a 110.45±7.66 a 104.55±6.06 a 105.39±3.77 a
T5 119.88±7.58 a 93.21±2.98 b 82.96±1.44 b 80.13±5.13 b 83.41±2.96 b
T6 101.79±5.16 a 86.03±2.10 b 79.49±3.72 b 58.10±1.13 c 80.90±3.51 b

表3

淹水胁迫及喷施S3307对小豆幼苗叶片SOD/CAT的影响"

品种
Variety
处理
Treatment
淹水天数 Waterlogging days
1 d 2 d 3 d 4 d 5 d
龙小豆4号
Longxiaodou 4
T1 2.05±0.49 a 1.74±0.07 a 1.97±0.09 a 2.05±0.16 a 1.92±0.01 b
T2 1.95±0.23 a 1.88±0.04 a 1.95±0.05 a 2.14±0.11 a 2.43±0.07 a
T3 1.74±0.10 a 1.68±0.06 a 1.69±0.05 b 1.33±0.03 b 1.72±0.02 c
天津红
Tianjinhong
T4 1.59±0.06 a 1.61±0.09 a 1.49±0.08 a 1.57±0.05 a 1.49±0.11 a
T5 1.64±0.07 a 1.58±0.05 a 1.37±0.04 a 1.51±0.08 a 1.75±0.11 a
T6 1.47±0.03 a 1.36±0.02 b 1.40±0.03 a 1.22±0.03 b 1.43±0.06 a

图6

淹水胁迫及喷施S3307对小豆幼苗叶片脯氨酸含量的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图7

淹水胁迫及喷施S3307对小豆幼苗叶片可溶性糖含量的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图8

淹水胁迫及喷施S3307对小豆幼苗叶片可溶性蛋白含量的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图9

淹水胁迫及喷施S3307对小豆幼苗叶片ABA含量的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图10

淹水胁迫及喷施S3307对小豆幼苗叶片IAA含量的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图11

淹水胁迫及喷施S3307对小豆幼苗叶片SA含量的影响 处理同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

表4

淹水胁迫及喷施S3307对小豆单盆产量的影响"

年份
Year
品种
Variety
处理
Treatment
淹水天数 Waterlogging days
1 d 2 d 3 d 4 d 5 d
2018 龙小豆4号
Longxiaodou 4
T1 33.32±0.64 a 33.32±0.64 a 33.32±0.64 a 33.32±0.64 a 33.32±0.64 a
T2 32.31±0.32 a 31.83±0.41 a 30.54±0.32 b 29.78±0.29 b 29.12±0.18 b
T3 32.78±0.43 a 32.50±0.27 a 31.91±0.46 ab 31.62±0.48 a 30.56±0.35 b
天津红
Tianjinhong
T4 27.36±0.31 a 27.36±0.31 a 27.36±0.31 a 27.36±0.31 a 27.36±0.31 a
T5 26.65±0.27 a 26.63±0.11 a 26.00±0.11 b 25.57±0.18 b 24.62±0.18 c
T6 27.20±0.16 a 27.24±0.28 a 26.55±0.24 ab 26.58±0.18 a 25.52±0.19 b
2019 龙小豆4号
Longxiaodou 4
T1 30.37±0.22 a 30.37±0.22 a 30.37±0.22 a 30.37±0.22 a 30.37±0.22 a
T2 30.12±0.39 a 29.85±0.39 a 28.92±0.24 b 28.07±0.25 b 27.82±0.86 b
T3 30.27±0.16 a 29.97±0.32 a 29.73±0.17 a 28.87±0.13 a 28.32±0.25 b
天津红
Tianjinhong
T4 23.62±0.39 a 23.62±0.39 a 23.62±0.39 a 23.62±0.39 a 23.62±0.39 a
T5 22.57±1.07 a 22.70±0.50 a 22.30±0.20 b 21.73±0.22 b 21.28±0.15 c
T6 23.45±0.33 a 23.10±0.33 a 22.92±0.13 ab 22.88±0.12 a 22.40±0.16 b
[1] 赵东晓, 董亚茹, 孙景诗, 杜建勋, 陈传杰, 娄齐年, 梁明芝, 王照红. 淹水胁迫对桑树幼苗生长和生理特性的影响. 山东农业科学, 2018,50(11):55-57.
Zhao D X, Dong Y R, Sun J S, Du J X, Chen C J, Lou Q N, Liang M Z, Wang Z H. Effects of waterlogging stress on seedling growth and physiological characteristics of mulberry. Shandong Agric Sci, 2018,50(11):55-57 (in Chinese with English abstract).
[2] Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol, 2011,190:289-298.
doi: 10.1111/j.1469-8137.2010.03575.x pmid: 21563365
[3] 尤东玲, 张星, 于康珂, 李潮海, 王群. 亚精胺酸对淹水胁迫下玉米幼苗生长和生理特性的影响. 玉米科学, 2016,24(1):74-80.
You D L, Zhang X, Yu K K, Li C H, Wang Q. Effect of exogenous spermidine on growth and physiological properties of maize seedling under waterlogging stress. J Maize Sci, 2016,24(1):74-80 (in Chinese with English abstract).
[4] Normile D. Reinventing rice to feed the world. Science, 2008,321:330-333.
[5] 陈鹭真, 林鹏, 王文卿. 红树植物淹水胁迫响应研究进展. 生态学报, 2006,26:586-593.
Chen L Z, Lin P, Wang W Q. Mechanisms of mangroves waterlogging resistance. Acta Ecol Sin, 2006,26:586-593 (in Chinese with English abstract).
[6] 吴麟, 张伟伟, 葛晓敏, 唐罗忠. 植物对淹水胁迫的响应机制研究进展. 世界林业研究, 2012,25(6):27-33.
Wu L, Zhang W W, Ge X M, Tang L Z. A review of the response mechanisms of plants to waterlogging stress. World For Res, 2012,25(6):27-33 (in Chinese with English abstract).
[7] 余卫东, 冯利平, 胡程达, 彭记永. 苗期涝渍对黄淮地区夏玉米生长和产量的影响. 生态学杂志, 2015,34:2161-2166.
Yu W D, Feng L P, Hu C D, Peng J Y. Effects of waterlogging during seedling stage on the growth and yield of summer maize in Huang-Huai region. Chin J Ecol, 2015,34:2161-2166 (in Chinese with English abstract).
[8] 于奇, 冯乃杰, 王诗雅, 左官强, 郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响. 作物学报, 2019,45:1080-1089.
Yu Q, Feng N J, Wang S Y, Zuo G Q, Zheng D F. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress. Acta Agron Sin, 2019,45:1080-1089 (in Chinese with English abstract).
[9] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰. 烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响. 中国油料作物学报, 2016,38:611-618.
Zhang H P, Zhang P P, Li B, Li D, Liu W B, Feng N J, Zheng D F. Effects of uniconazole on leaf photosynthetic characteristics and yield of soybean under waterlogging stress. Chin J Oil Crop Sci, 2016,38:611-618 (in Chinese with English abstract).
[10] 项洪涛, 李琬, 何宁, 王雪扬, 郑殿峰, 王彤彤, 粱晓艳, 唐晓东, 李一丹. 苗期胁迫下烯效唑对红小豆根系抗寒生理及产量的影响. 草业学报, 2019,28(7):92-102.
Xiang H T, Li W, He N, Wang X Y, Zheng D F, Wang T T, Liang X Y, Tang X D, Li Y D. Effects of S3307 on physiology of chilling resistance in root and yield of adzuki bean under low temperature stress during seeding stage. Acta Pratac Sin, 2019,28(7):92-102 (in Chinese with English abstract).
[11] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰. 烯效唑对淹水胁迫下大豆农艺形状及生理生化指标的影响. 中国油料作物学报, 2017,39(5):655-663.
Zhang H P, Zhang P P, Li B, Li D, Liu W B, Feng N J, Zheng D F. Effects of uniconazole on alleviation of waterlogging stress in soybean. Chin J Oil Crop Sci, 2017,39(5):655-663 (in Chinese with English abstract).
[12] 赵宏伟, 王喆, 瞿炤珺, 李晓, 张妍, 张盛楠. 分蘖期冷水胁迫对寒地粳稻根系生理特性及产量的影响. 东北农业大学学报, 2019,50(12):10-20.
Zhao H W, Wang Z, Qu Z J, Li X, Zhang Y, Zhang S N. Effect of cold water stress at tillering stage on physiological characteristics and yield of japonica rice roots in cold region. J Northeast Agric Univ, 2019,50(12):10-20 (in Chinese with English abstract).
[13] 梁晓艳, 刘春娟, 冯乃杰, 郑殿峰, 卢洁春, 项洪涛. 两种生长调节剂对大豆叶片昼夜同化物生理代谢及产量的影响. 大豆科学, 2019,38:244-250.
Liang X Y, Liu C J, Feng N J, Zheng D F, Lu J C, Xiang H T. The Effects of two growth regulators on diurnal assimilate physiological metabolism variation of soybean leaves and yield. Soybean Sci, 2019,38:244-250 (in Chinese with English abstract).
[14] 刘洋, 郑殿峰, 冯乃杰, 张红梅, 张盼盼, 陈文浩, 刘涛, 龚屾. 鼓粒期叶施烯效唑和激动素对绿豆叶片碳代谢及籽粒产量的影响. 西南农业学报, 2016,29:1584-1589.
Liu Y, Zheng D F, Feng N J, Zhang H M, Zhang P P, Chen W H, Liu T, Gong S. Effects of spraying uniconazole and kinetin in leaves of carbon metabolism and grain yield on mung bean in R6. Southwest China J Agric Sci, 2016,29:1584-1589 (in Chinese with English abstract).
[15] 李合生, 孙群, 赵世杰. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000. pp167-185 184-185.
Li H S, Sun Q, Zhao S J. Principles and Techniques of Plant Physiological Biochemical Experimental, Beijing: Higher Education Press 2000. pp167-185 184-185(in Chinese).
[16] 张宪政. 作物生理研究法. 北京: 农业出版社, 1992. pp 201-202.
Zhang X Z. Crop Physiology Research Method, Beijing: Chinese Agriculture Press, 1992. pp 201-202(in Chinese).
[17] 范建新, 邓仁菊, 王永清, 罗丽娜, 韩树全, 刘荣. 火龙果茎段及花药愈伤组织内源激素含量的测定. 分子植物育种, 2017,15:5093-5102.
Fan J X, Deng R J, Wang Y Q, Luo L N, Han S Q, Liu R. Determination of endogenous hormones in callus originated from stem and anther culture of pitaya. Mol Plant Breed, 2017,15:5093-5102 (in Chinese with English abstract).
[18] 宋喜贵, 佘小平. 植物体内过氧化氢的产生及其生理作用. 连云港示范高等专科学校学报, 2010, (4):99-103.
Song X G, She X P. The generation and the role of hydrogen peroxide in plant. J Lianyungang Teach Coll, 2010, (4):99-103 (in Chinese with English abstract).
[19] 齐玉军, 方传文, 徐泽俊, 王晓军, 孙东雷, 卞能飞, 王幸. 外源二乙基二硫代氨基甲酸钠对花期淹水大豆根系抗氧化系统的影响. 中国油料作物学报, 2019,41:577-587.
Qi Y J, Fang C W, Xu Z J, Wang X J, Sun D L, Bian N F, Wang X. Effect of exogenous sodium diethyldithiocarbamate on antioxidation system in soybean root on waterlogging at flowering stage. Chin J Oil Crop Sci, 2019,41:577-587 (in Chinese with English abstract).
[20] 孙小艳, 陈铭, 李彦强, 吴照祥, 钟永达, 余发新. 淹水胁迫下北美鹅掌楸无性系生理生化响应差异. 植物生理学报, 2018,54:473-482.
Sun X Y, Chen M, Li Y Q, Wu Z D, Zhong Y D, Yu F X. Variations in physiological and biochemical responses in clones of Liriodendron tulipifera under flooding stress. Plant Physiol J, 2018,54:473-482 (in Chinese with English abstract).
[21] 李春燕, 徐雯, 刘立伟, 杨景, 朱新开, 郭文善. 条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化. 应用生态学报, 2015,26:2015-2022.
Li C Y, Xu W, Liu L W, Yang J, Zhu X K, Guo W S. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage. Chin J Appl Ecol, 2015,26:2015-2022 (in Chinese with English abstract).
[22] Kanazawa S, Sano S, Koshiba T, Ushimaru T. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Physiol Plant, 2010,109:211-216.
[23] 杨文钰, 徐精文, 张鸿. 烯效唑对秧苗抗寒性的影响及其作用机理研究. 杂交水稻, 2003,18(2):53-57.
Yang W Y, Xu J W, Zhang H. Studies on action mechanism and effect of uniconzole (S-3307) on cold resistance of rice seedlings. Hybrid Rice, 2003,18(2):53-57 (in Chinese with English abstract).
[24] 张永平, 刁倩楠, 张文献, 田守波, 许爽, 范红伟. 淹水胁迫及胁迫解除对甜瓜幼苗呼吸等生理代谢的影响. 中国蔬菜, 2019, (11):41-48.
Zhang Y P, Diao Q N, Zhang W X, Tian S B, Xu S, Fan H W. Effects of waterlogging stress and stress relieve on respiration and other physiological metabolisms of melon seedlings. China Veget, 2019, (11):41-48 (in Chinese with English abstract).
[25] 王华, 侯瑞贤, 李晓峰, 朱红芳, 朱玉英, 侯喜林. 淹水胁迫对不结球白菜渗透调节物质含量的影响. 植物生理学报, 2013,49:29-33.
Wang H, Hou R X, Li X F, Zhu H F, Zhu R Y, Hou X L. Effects of waterlogging stress on contents of osmotic adjustment substances in pak-choi (Brassica campestris L. chinensis Makino). Plant Physiol J, 2013,49:29-33 (in Chinese with English abstract).
[26] 段娜, 贾玉奎, 徐军, 陈海玲, 孙鹏. 植物内源激素研究进展. 中国农学通报, 2015,31(2):159-165.
Duan N, Jia Y K, Xu J, Chen H L, Sun P. Research progress on plant endogenous hormones. Chin Agric Sci Bull, 2015,31(2):159-165 (in Chinese with English abstract).
[27] 严雯奕, 叶胜海, 董彦君, 金庆生, 张小明. 植物叶片衰老相关研究进展. 作物杂志, 2010, (4):4-9.
Yan W Y, Ye S H, Dong Y J, Jin Q S, Zhang X M. Research progress related to plant leaf senescence. Crops, 2010, (4):4-9 (in Chinese with English abstract).
[28] 陈博雯, 袁剑英, 覃子海, 张烨, 肖玉菲, 张晓宁, 刘海龙. 淹水胁迫中澳洲茶树内源激素动态变化. 山西农业科学, 2019,47:573-576.
Chen B W, Yuan J Y, Qin Z H, Zhang Y, Xiao Y F, Zhang X N, Liu H L. Dynamic changes of endogenous hormones in Melaleuca alternifolia under flooding stress. J Shanxi Agric Sci, 2019,47:573-576 (in Chinese with English abstract).
[29] 潘向艳, 季孔庶, 方彦. 淹水胁迫下杂交鹅掌楸无性系叶片内源激素含量的变化. 南京林业大学学报(自然科学报), 2008,32(1):29-32.
Pan X Y, Ji K S, Fang Y. Changes in contents of endogenous hormones in different clones of Liriodendron chinense × L. tulipifera under flooding stress. J Nanjing For Univ (Nat Sci Edn), 2008,32(1):29-32 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!