作物学报 ›› 2021, Vol. 47 ›› Issue (4): 780-786.doi: 10.3724/SP.J.1006.2021.04122
• 研究简报 • 上一篇
秦天元1,2(), 刘玉汇1,2, 孙超1,2, 毕真真1,2, 李安一3, 许德蓉1,2, 王一好1,2, 张俊莲1, 白江平1,2,*()
QIN Tian-Yuan1,2(), LIU Yu-Hui1,2, SUN Chao1,2, BI Zhen-Zhen1,2, LI An-Yi3, XU De-Rong1,2, WANG Yi-Hao1,2, ZHANG Jun-Lian1, BAI Jiang-Ping1,2,*()
摘要:
干旱胁迫是影响马铃薯产量和品质的主要非生物胁迫因素之一。马铃薯在抵御干旱胁迫的过程中, 根系的生长发育和构型分布发挥着重要作用。Igt基因家族是普遍存在于植物中的一类功能基因, 在调控植物根系构型和提高植株抗逆性等方面效果显著。本研究以马铃薯双单倍体‘DM-v4.03’高质量基因组为参考, 在全基因组范围内分析鉴定了StIgt基因家族的成员, 并采用多种生物信息学软件对其进行了系统进化树构建、染色体定位、保守蛋白结构域、基因结构和顺式元件预测。同时, 利用本课题组前期对马铃薯四倍体品系在不同干旱条件下的转录组测序结果, 分析了StIgts响应干旱胁迫的表达谱。结果表明, 在马铃薯中共鉴定获得10个StIgt家族成员, 其中StIgt1由本课题组前期克隆获得。除StIgt1位置信息不明外, 其余基因不均匀地分布在1、2、5、7、10和11号染色体上。StIgt家族蛋白长度为110~283个氨基酸, 分子量介于13.136~32.542 kD之间, 预测等电点为3.82~9.86。系统进化树分析发现, 该基因家族可分为3个亚族, 亚族间的基因结构、蛋白保守域和顺式作用元件差别明显。干旱胁迫下的表达谱分析表明, StIgt6、StIgt7、StIgt9和StIgt10响应早期干旱胁迫, 在干旱2 h时即迅速上调表达。这些结果为阐明StIgt基因家族的进化关系和进一步研究其成员的功能特性提供了理论基础。
[1] |
Boguszewskamańkowska D, Zarzyńska K, Nosalewicz A. Drought differentially affects root system size and architecture of potato cultivars with differing drought tolerance. Am J Potato Res, 2019,97:54-62.
doi: 10.1007/s12230-019-09755-2 |
[2] | Guoju Q, Zhengji Z, Fengju M, Runyuan W. Influence of increased temperature on the potato yield and quality in a semiarid district of northwest china. Acta Ecol Sin, 2015,35:830-836. |
[3] |
Devaux A, Haverkort A J. The effects of shifting planting dates and mulching on late blight ( Phytophthora infestans) and drought stress of potato crops grown under tropical highland conditions. Exp Agric, 2008,23:325-333.
doi: 10.1017/S001447970001721X |
[4] | Shuangyuan C. Growth and yield response of different crops sowing after potato ( Solanum tuberosum L.) harvest in Kunming area. J Anhui Agric Sci, 2013,41:3794-3796. |
[5] |
Farooq M, Wahid A, Kobayashi N, Fujita D S M A. Plant drought stress: effects, mechanisms and management to cite this version: review article. Agron Sustain Dev, 2009,29:185-212.
doi: 10.1051/agro:2008021 |
[6] | Raza M A S, Shahid A M, Saleem M F. Effects and management strategies to mitigate drought stress in oilseed rape ( Brassica napus L.): a review. Zemdirbyste, 2017,104:85-94. |
[7] |
Siddiqui M H, Al-Khaishany M Y, Al-Qutami M A, Al-Whaibi M H, Grover A, Ali H M, Al-Wahibi M S, Bukhari N A. Response of different genotypes of faba bean plant to drought stress. Int J Mol Sci, 2015,16:10214-10227.
doi: 10.3390/ijms160510214 pmid: 25950766 |
[8] |
Hollender C A, Dardick C. Molecular basis of angiosperm tree architecture. New Phytol, 2015,206:541-556.
doi: 10.1111/nph.13204 pmid: 25483362 |
[9] |
Uga Y, Sugimoto K, Ogawa S. Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet, 2013,45:1097-1102.
doi: 10.1038/ng.2725 pmid: 23913002 |
[10] | Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y. Deep rooting conferred by deeper rooting 1 enhances rice yield in paddy fields. Sci Rep, 2014,4:5544-5563. |
[11] |
Guseman J M, Webb K, Srinivasan C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J, 2017,89:1093-1105.
pmid: 28029738 |
[12] |
Dardick C, Callahan A, Horn R. Ppetac1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013,75:618-630.
doi: 10.1111/tpj.12234 pmid: 23663106 |
[13] | Coste A T, Karababa M, Ischer F, Bille J, Sanglard D. TAC1 transcriptional activator of CDR genes is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell, 2004,6:1639-1652. |
[14] |
Yu B, Lin Z, Li H. TAC1: a major quantitative trait locus controlling tiller angle in rice. Plant J, 2008,52:891-898.
pmid: 17908158 |
[15] | Li P, Wang Y, Qian Q. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007,17:327-327. |
[16] |
Dong Z, Jiang C, Chen X, Zhang T. Maize lazy1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling and light response. Plant Physiol, 2013,163:1306-1322.
pmid: 24089437 |
[17] |
Altschul S F, Madden T L, Schäffer A A. Gapped blast and psi-blast: a new generation of protein databases search programs. Nucleic Acids Res, 1997,25:3389-3402.
pmid: 9254694 |
[18] | Aron M B, Derbyshire M K, Gonzales N R. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2014,43:222-226. |
[19] | Finn R D, Alex B, Jody C. Pfam: the protein families database. Nucleic Acids Res, 2014,42:222-230. |
[20] | Thompson J D, Gibson T J, Higgins D G. Multiple sequence alignment using clustalw and clustalx. Curr Protoc Bioinf, 2003,23:1-22. |
[21] | Kumar S, Stecher G, Tamura K. Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016,33:1870-1874. |
[22] | Bailey T L, Nadya W, Chris M. Meme: discovering and analyzing dna and protein sequence motifs. Nucleic Acids Res, 2006,34:369-373. |
[23] | Madke S S, Cherian K J, Badere R S. A modified Murashige and Skoog media for efficient multipleshoot induction in G. arborea Roxb. J For Res, 2014,3:557-564. |
[24] | Eiasu B K, Soundy P, Hammes P S. Response of potato ( Solanum tuberosum L.) tuber yield components to gelpolymer soil amendments and irrigation regimes. Crop Hortic, 2007,35:25-31. |
[25] | Walworth J L, Carling D E. Tuber initiation and development in irrigated and nonirrigated potatoes. Am J Potato Res, 2002,79:387-395. |
[26] | Lopes M S, Reynolds M P. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Funct Plant Biol, 2010,37:147-156. |
[27] | Lynch J P. Steep cheap and deep: an ideotype to optimize water and nacquisition by maize root systems. Ann Bot, 2013,112:347-357. |
[28] |
Villordon A Q, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity. Trends Plant Sci, 2014,19:419-425.
pmid: 24630073 |
[29] | Roychoudhry S, Kepinski S. Shoot and root branch growth angle control the wonderfulness of lateralness. Curr Opin Plant Biol, 2015,23:124-131. |
[30] |
Yoshihara T, Spalding E P. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol, 2017,175:959-969.
doi: 10.1104/pp.17.00942 pmid: 28821594 |
[31] | Zhang S L, Li D F. The prediction of rice gene by Fgenesh. Agric Sci China, 2008,7:387-394. |
[32] | Scott M, Madden T L. Blast: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res, 2004,32:20-25. |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[3] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[4] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[5] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[6] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[7] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[8] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[9] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[12] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[13] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[14] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[15] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
|