欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2490-2500.doi: 10.3724/SP.J.1006.2021.04246

• 耕作栽培·生理生化 • 上一篇    下一篇

外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响

张云1(), 王丹媚1, 王孝源1, 任晴雯1, 唐可1, 张丽宇1, 吴玉环2,3, 刘鹏1,*()   

  1. 1浙江师范大学化学与生命科学学院, 浙江金华 321004
    2杭州师范大学生命与环境科学学院, 浙江杭州 310036
    3中国科学院沈阳应用生态研究所, 辽宁沈阳 110016
  • 收稿日期:2020-11-13 接受日期:2021-03-19 出版日期:2021-12-12 网络出版日期:2021-09-29
  • 通讯作者: 刘鹏
  • 作者简介:E-mail: 1139083486@qq.com
  • 基金资助:
    国家自然科学基金项目(32001224);国家自然科学基金项目(41571049)

Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress

ZHANG Yun1(), WANG Dan-Mei1, WANG Xiao-Yuan1, REN Qing-Wen1, TANG Ke1, ZHANG Li-Yu1, WU Yu-Huan2,3, LIU Peng1,*()   

  1. 1College of Chemistry and Life Science, Zhejiang Normal University / Botany Laboratory, Jinhua 321004, Zhejiang, China
    2College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
    3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
  • Received:2020-11-13 Accepted:2021-03-19 Published:2021-12-12 Published online:2021-09-29
  • Contact: LIU Peng
  • Supported by:
    National Natural Science Foundation of China(32001224);National Natural Science Foundation of China(41571049)

摘要:

镉(Cadmium, Cd)是一种有毒污染物, 揭示外源茉莉酸(jasmonic acid, JA)对菊芋(Helianthus tuberosus L.)镉胁迫下光合特性及镉积累的影响, 为解决土壤重金属问题提供实践依据。以耐镉性强的榆林菊芋和耐镉性弱的成都菊芋为材料, 采用土培盆栽, 设置低、中、高3个镉浓度(75、150、300 mg kg-1), 叶面喷施25 μmol L-1 JA, 探究其对不同程度镉污染的缓解效果。结果表明, JA缓解后, 成都菊芋株高在低镉组出现最大值, 为CK组的1.26倍, 榆林菊芋株高变化较小, 二者的叶面积、根长和干重均呈上升趋势。此外, 榆林菊芋的叶绿素含量在低镉组第7天最大, 为胁迫组的1.27倍, 成都菊芋第21天才达到峰值。二者的初始荧光(F0)恢复正常, PSII最大光能转化效率(Fv/Fm)大幅提升, 光化学淬灭系数(qP)和电子传递速率(ETR)增加, 非光化学淬灭系数(qN)下降至对照水平。并且净光合速率(Pn)、气孔导度(Gs)及蒸腾速率(Tr)均呈上升曲线, 胞间CO2浓度(Ci)减小。各器官镉含量大小为根>叶>茎, 除茎部外其余组织生物富集系数都大于1, 转移系数小于1, 通过激光共聚焦显微观察发现气孔周围镉离子大量减少。综上, 施加外源JA能够提高菊芋的叶绿素含量, 保护叶绿体结构免遭破坏, 净光合速率及光合碳同化效率提升, 增加了干物质的积累, 增强植株抗镉性。JA信号减少了镉的吸收和转移, 减轻了镉毒胁迫, 这为种植菊芋修复土壤镉污染提供理论指导。

关键词: 菊芋, 茉莉酸, 镉胁迫, 光合特性, 镉积累

Abstract:

Revealing the effects of exogenous jasmonic acid (JA) on the photosynthetic characteristics and Cadmium (Cd), a toxic pollutant, accumulation in Helianthus tuberosus L. under Cd stress can provide a practical basis for remedying soil heavy metal contamination. In this study, seedlings from Yulin (with strong Cd-tolerance) and Chengdu Helianthus tuberosus cultivars (with weak Cd-tolerance) were selected for pot culture experiments. These seedlings were treated with 25 μmol L-1 JA by foliar application to explore the alleviation effects of exogenous jasmonic acid under different degrees of Cd stress, with concentrations of low, medium, and high levels (75, 150, and 300 mg kg-1). The results showed that compared with other groups, JA had improved the height of Chengdu seedlings under the low Cd stress group, which was 1.26 times higher than that in CK group and reached to its maximum. But the height of Yulin seedlings did not change to a great extent. In addition, the leaf area, root length, and dry weight of both groups allexhibited an upward trend. The chlorophyll content (SPAD value) of Yulin seedlings had reached the maximum value on the 7th day in JA relieved low Cd group, which was 1.27 times of Cd stress group, and Chengdu seedlings had cost 21 days to reach its peak value under the same conditions. Beyond that, the initial fluorescence (F0) of each Cd group almost reduced to normal level, the maximum photochemical efficiency (Fv/Fm) rised up significantly, the photochemical quenching coefficient (qP) and the electron transfer rate (ETR) increased obviously, but the non-photochemical quenching coefficient (qN) decreased to CK group level. At the same time, the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) had maintained upward trends, but the intercellular CO2 concentration (Ci) had decreased. The concentrations of Cd in each organ of these Helianthus tuberosus cultivars under the stress groups were in the order of root > leaf > stem. Except stem, the bioconcentration factors (BCF) of other tissues were all more than one, and the translocation factors (TF) were less than one. Through the laser confocal microscope, the fluorescence signal of Cd ions around the stomata was significantly faded. In conclusion, exogenous JA could increase the content of chlorophyll and prevent the structure of chloroplast from being damaged. The net photosynthetic rate and photosynthetic carbon assimilation efficiency were enhanced, which had increased the accumulation of dry matter and had improved the resistance of seedlings to Cd stress. JA signal had reduced the absorption and transportation of cadmium, which alleviated the Cd toxicity to the plants. This study provides the theoretical basis for planting Helianthus tuberosus to repair cadmium contaminated soil.

Key words: Helianthus tuberosus L., jasmonic acid, cadmium stress, photosynthetic characteristics, cadmium accumulation

表1

外源JA对镉胁迫下菊芋生长特性的影响"

品种
Cultivar
处理组
Treatment
株高
Plant height (cm)
叶面积
Leaf area (cm2)
根长
Root length (cm)
干重
Dry weight (g)
成都菊芋
Chengdu
artichoke
CK 17.40±0.38 bc 13.40±0.28 c 24.23±0.24 c 5.98±0.84 b
JA 19.63±0.34 ab 15.39±0.69 b 28.33±0.67 b 7.37±1.41 a
75Cd 18.63±0.33 b 15.87±0.97 b 33.50±0.95 ab 6.00±0.32 b
150Cd 15.59±0.71 c 15.17±0.99 bc 24.06±0.73 c 5.84±0.67 b
300Cd 13.13±0.35 d 14.14±0.69 c 23.60±1.04 c 4.98±0.15 b
75Cd+JA 21.86±0.13 a 16.45±0.54 ab 35.16±0.78 a 7.24±0.02 ab
150Cd+JA 19.93±0.93 ab 17.48±0.64 a 30.13±0.87 b 6.81±0.95 ab
300Cd+JA 16.23±0.81 bc 15.65±0.53 b 28.26±0.46 b 6.27±0.13 ab
榆林菊芋
Yulin
artichoke
CK 19.40±0.69 a 18.50±0.62 b 28.00±0.62 bc 8.91±0.77 ab
JA 21.20±0.85 a 18.69±0.63 b 29.70±0.35 abc 9.66±1.51 a
75Cd 19.30±1.02 a 17.07±0.29 c 30.40±0.18 abc 8.64±1.47 ab
150Cd 18.23±0.42 ab 18.93±1.49 a 27.83±0.57 cd 7.33±0.44 bc
300Cd 16.40±0.60 b 17.65±0.91 bc 26.80±0.46 cd 6.94±0.09 bc
75Cd+JA 20.96±0.95 a 18.80±0.51 ab 38.36±0.06 ab 9.98±0.33 a
150Cd+JA 18.46±0.33 ab 20.11±0.35 a 35.46±0.46 ab 8.47±0.58 ab
300Cd+JA 16.70±0.30 ab 17.88±0.58 b 30.90±0.58 abc 8.01±0.79 b

图1

外源JA对成都菊芋和榆林菊芋SPAD值的影响 误差线表示标准差。不同小写字母表示同一生育期内处理间差异显著(P < 0.05)。处理同表1。"

表2

外源JA对菊芋镉胁迫下叶绿素荧光参数的影响"

品种
Cultivar
处理组
Treatment
初始荧光
Fo
PSII最大光化学量子产量Fv/Fm 光化学淬灭
系数qP
非光化学淬灭
系数qN
电子传递
速率ETR
成都菊芋
Chengdu
artichoke
CK 0.177±0.016 b 0.813±0.0073 bc 0.697±0.971 ab 0.417±0.010 de 15.867±0.330 a
JA 0.180±0.004 b 0.828±0.005 a 0.738±0.059 a 0.404±0.020 de 15.784±0.498 a
75Cd 0.217±0.201 ab 0.806±0.003 c 0.529±0.036 c 0.484±0.027 c 11.400±0.252 c
150Cd 0.271±0.007 ab 0.765±0.006 d 0.481±0.013 c 0.525±0.005 b 13.333±1.506 b
300Cd 0.339±0.021 a 0.683±0.009 e 0.442±0.010 d 0.647±0.020 a 10.900±0.500 c
75Cd+JA 0.190±0.024 b 0.825±0.003 ab 0.626±0.031 b 0.432±0.012 d 13.260±0.460 b
150Cd+JA 0.199±0.010 b 0.817±0.002 b 0.534±0.055 c 0.414±0.026 de 14.067±0.811 b
300Cd+JA 0.201±0.038 b 0.814±0.006 bc 0.532±0.036 c 0.396±0.030 e 13.006±0.575 b
榆林菊芋
Yulin
artichoke
CK 0.229±0.042 b 0.816±0.004 b 0.661±0.059 a 0.509±0.028 d 22.400±1.400 a
JA 0.210±0.201 b 0.826±0.001 a 0.647±0.008 ab 0.587±0.011 c 20.733±0.607 ab
75Cd 0.261±0.015 ab 0.815±0.004 b 0.605±0.021 b 0.619±0.028 bc 19.140±0.748 b
150Cd 0.309±0.010 ab 0.802±0.006 c 0.563±0.049 b 0.687±0.011 ab 20.530±1.809 ab
300Cd 0.383±0.004 a 0.738±0.009 d 0.502±0.023 c 0.714±0.020 a 18.611±0.966 b
75Cd+JA 0.191±0.095 b 0.824±0.005 a 0.646±0.010 ab 0.544±0.026 cd 20.630±1.213 ab
150Cd+JA 0.224±0.024 b 0.820±0.004 ab 0.638±0.022 ab 0.581±0.038 c 22.180±1.139 a
300Cd+JA 0.282±0.014 ab 0.815±0.005 b 0.631±0.020 ab 0.656±0.058 b 21.460±0.650 a

图2

外源JA对成都菊芋和榆林菊芋镉胁迫下气体交换参数的影响 误差线表示标准差。不同小写字母表示同一生育期内处理间差异显著(P < 0.05)。处理同表1。"

表3

外源JA对菊芋根茎叶中镉含量的影响"

品种
Cultivar
处理组
Treatment
器官镉含量
Organ cadmium content (mg kg-1)
生物富集系数
Biological concentration factor
转移系数
Translocation factor (%)

Root

Stem

Leaf

Root

Stem

Leaf
成都菊芋
Chengdu
artichoke
75Cd 263.53±35.42 e 92.17±3.01 d 112.06±13.01 e 3.51±0.47 b 1.23±0.04 b 1.49±0.17 c 0.43±0.15 ab
150Cd 516.58±26.61 c 184.77±5.16 b 317.83±5.03 b 3.44±0.18 b 1.96±0.03 b 2.12±0.03 b 0.62±0.23 a
300Cd 1343.41±42.54 a 413.73±8.34 a 725.16±3.05 a 4.48±0.14 a 1.38±0.03 a 2.42±0.01 a 0.54±0.03 ab
75Cd+JA 182.96±11.33 f 41.45±2.04 e 62.38±2.04 f 2.44±0.15 d 0.55±0.03 c 0.83±0.03 e 0.34±0.21 b
150Cd+JA 356.66±21.53 d 83.87±2.05 d 156.48±7.35 d 2.38±0.14 d 0.56±0.01 c 1.04±0.05 d 0.44±0.07 ab
300Cd+JA 867.79±30.18 b 124.94±6.47 c 438.56±14.10 c 2.89±0.10 c 0.42±0.02 d 1.46±0.05 c 0.51±0.14 ab
榆林菊芋
Yulin
artichoke
75Cd 947.25±22.45 c 201.83±4.03 d 312.69±3.01 c 12.63±0.30 b 2.69±0.05 a 4.17±0.19 c 0.33±0.02 b
150Cd 1786.47±41.71 b 378.20±7.13 b 720.99±5.45 b 11.91±0.28 c 2.52±0.05 b 4.81±0.04 a 0.40±0.24 ab
300Cd 5213.37±53.19 a 413.97±5.04 a 1328.56±2.45 a 17.38±0.18 a 1.38±0.02 c 4.43±0.01 b 0.25±0.02 b
75Cd+JA 320.31±24.41 e 57.94±3.02 f 82.92±4.26 f 4.27±0.33 d 0.77±0.04 d 1.11±0.06 f 0.26±0.05 b
150Cd+JA 560.99±20.71 d 104.03±6.27 e 325.77±11.19 d 3.74±0.14 e 0.69±0.04 e 2.17±0.07 d 0.58±0.11 a
300Cd+JA 895.69±21.09 c 235.48±2.02 c 410.48±3.47 c 2.99±0.07 f 0.78±0.01 d 1.37±0.01 e 0.46±0.06 ab

图3

外源JA对菊芋叶片中镉离子分布的影响 处理同表1。"

[1] 綦峥, 齐越, 杨红, 张铁林, 凌娜. 土壤重金属镉污染现状、危害及治理措施. 食品安全质量检测学报, 2020, 11:2286-2294.
Qi Z, Qi Y, Yang H, Zhang T L, Ling N. Status, harm and treatment measures of heavy metal cadmium pollution in soil. J Food Safety Quality, 2020, 11:2286-2294 (in Chinese with English abstract).
[2] 陈良, 隆小华, 郑晓涛, 刘兆普. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究. 草业学报, 2011, 20(6):60-67.
Chen L, Long X H, Zheng X T, Liu Z P. Effect on the photosynthetic characteristics of Cd uptake and translocation in seedlings of two Helianthus tuberosus varieties. Acta Pratac Sin, 2011, 20(6):60-67 (in Chinese with English abstract).
[3] 周晓阳, 徐明岗, 周世伟, Colinet G. 长期施肥下我国南方典型农田土壤的酸化特征. 植物营养与肥料学报, 2015, 21:1615-1621.
Zhou X Y, Xu M G, Zhou S W, Colinet G. Soil acidification characteristics in southern China’s croplands under long-term fertilization. J Plant Nutr Fert, 2015, 21:1615-1621 (in Chinese with English abstract).
[4] 陈明, 杨涛, 徐慧, 蔡忠萍, 赵玲. 赣南某钨矿区土壤中Cd、Pb的形态特征及生态风险评价. 环境化学, 2015, 34:2257-2262.
Chen M, Yang T, Xu H, Cai Z P, Zhao L. Distribution characteristics and ecological risk assessment of heavy metals Cd and Pb in soils around a tungsten mine of Gannan. Environ Chem, 2015, 34:2257-2262 (in Chinese with English abstract).
[5] Wang Z C. Effects and prevention of cadmium pollution on crops. Front Soc Sci Technol, 2020, 2:21-23.
[6] 王松良, 郑金贵. 土壤重金属污染的植物修复与金属超富集植物及其遗传工程研究. 中国生态农业学报, 2007, 15:190-194.
Wang S L, Zheng J G. Phytoremediation for heavy metal contamination in soil, metal hyperaccumulator and their genetic engineering. Chin J Eco-Agric, 2007, 15:190-194 (in Chinese with English abstract).
[7] 高会玲, 刘金隆, 郑青松, 洪立洲, 王长海, 马梅, 赵世训, 郑春芳. 外源油菜素内酯对镉胁迫下菊芋幼苗光合作用及镉富集的调控效应. 生态学报, 2013, 33:1935-1943.
Gao H L, Liu J L, Zheng Q S, Hong L Z, Wang C H, Ma M, Zhao S X, Zheng C F. Regulation of exogenous brassinosteroid on growth and photosynthesis of Helianthus tuberosus seedlings and cadmium biological enrichment under cadmium stress. Acta Ecol Sin, 2013, 33:1935-1943 (in Chinese with English abstract).
[8] 柳金库, 王云跃. 水土保持优良植物菊芋在生态修复领域的研究进展. 水土保持应用技术, 2018, (6):21-25.
Liu J K, Wang Y Y. Research progress of Helianthus tuberosus in the field of ecological restoration of soil and water conservation. Technol Soil Water, 2018, (6):21-25 (in Chinese).
[9] 李俊凯, 张丹, 周培, 刘群录. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征. 环境科学, 2018, 39:3845-3853.
Li J K, Zhang D, Zhou P, Liu Q L. Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing. Environ Sci, 2018, 39:3845-3853 (in Chinese with English abstract).
[10] 包金玉, 张聪聪, 马绍英, 张秀民, 张晓玲, 田鹏, 李胜. 茉莉酸甲酯和水杨酸对西兰花毛状根增殖和萝卜硫素及信号分子含量的影响. 植物生理学报, 2020, 56:1305-1312.
Bao J Y, Zhang C C, Ma S Y, Zhang X M, Zhang X L, Tian P, Li S. Effects of MeJA and SA on hairy root proliferation and sulphur content in Brassia oleracea var. italica. Plant Physiol J, 2020, 56:1305-1312 (in Chinese with English abstract).
[11] 张知晓, 泽桑梓, 户连荣, 刘凌, 季梅. 茉莉酸甲酯生物活性研究进展. 河南农业科学, 2018, 47(11):1-7.
Zhang Z X, Ze S Z, Hu L R, Liu L, Ji M. Research advance in biological activities of methyl jasmonate. J Henan Agric Sci, 2018, 47(11):1-7 (in Chinese with English abstract).
[12] Ali E, Hussain N, Shamsi I H, Jabeen Z, Siddiqui M H, Jiang L X. Role of jasmonic acid in improving tolerance of rapeseed ( Brassica napus L.) to Cd toxicity. J Zhejiang Univ Sci B, 2018, 19:130-146.
doi: 10.1631/jzus.B1700191
[13] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 39-114.
Bao S D, Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 39-114(in Chinese).
[14] 宋慧, 黄芸萍, 臧全宇, 张凌霄, 张香琴. 甜瓜幼苗不同叶位SPAD值与叶绿素含量的变化规律及相关性. 华北农学报, 2019, 34(增刊1):99-104.
Song H, Huang Y P, Zang Q Y, Zhang L X, Zhang X Q. Variation and correlation analysis of SPAD value and chlorophyll content of leaves at different position in melon seedling. Acta Agric Boreali Sin, 2019, 34(S1):99-104 (in Chinese with English abstract).
[15] 李志贤, 冯涛, 陈章, 陈国梁, 陈远其, 向言词, 刘庆龙, 刘顺. 镉胁迫对龙葵镉的吸收积累及生理响应的影响. 水土保持学报, 2017, 31(5):328-333.
Li Z X, Feng T, Chen Z, Chen G L, Chen Y Q, Xiang Y C, Liu Q L, Liu S. Effects of different levels Cd Stress on Cd uptake and physiological response of Solanum nigrum L. J Soil Water Conserv, 2017, 31(5):328-333 (in Chinese with English abstract).
[16] Simôes P S, Carbonari C A, Nascentes R F, Stasievski A, Velini E D. Selectivity of herbicides inhibitors of photosystem II for sugarcane cultivars. Planta Daninha, 2016, 34:803-814 (in Portuguese with English abstract).
doi: 10.1590/s0100-83582016340400021
[17] 黄文斌. 基于生物应用的镉离子荧光探针的设计制备及检测性能研究. 浙江大学硕士学位论文, 浙江杭州, 2019.
Huang W B. Design, Synthesis and Sensing Properties of Fluorescent Cd2+ Probe for Biological Application. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract).
[18] Shi G R, Cai Q S, Liu C F, Wu L. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Environ Exp Bot, 2007, 60:468-476.
doi: 10.1016/j.envexpbot.2007.01.004
[19] 蒋汉明, 李书启, 韩希凤, 王华, 郭剑霞. 镉对植物生长的影响及植物耐镉机理研究进展. 广东微量元素科学, 2012, 19(5):1-6.
Jiang H M, Li S Q, Han X F, Wang H, Guo J X. Progress on the effect for plant and their tolerant mechanism. Guangdong Trace Elem, 2012, 19(5):1-6 (in Chinese with English abstract).
[20] 郑黎明, 张杰, 杨红飞, 李全发, 袁静. 镉胁迫对荻生长、镉富集和土壤酶活性的影响. 水土保持学报, 2017, 31(5):334-339.
Zheng L M, Zhang J, Yang H F, Li Q F, Yuan J. Effects of Cd stress on the growth, Cd accumulation and soil enzyme activities of Miscanthus sacchariflorus. J Soil Water Conserv, 2017, 31(5):334-339 (in Chinese with English abstract).
[21] 杨彪, 杜荣宇, 杨玉, 朱德宽, 郭文川, 朱新华. 便携式植物叶片叶绿素含量无损检测仪设计与试验. 农业机械学报, 2019, 50(12):180-186.
Yang B, Du R Y, Yang Y, Zhu D K, Guo W C, Zhu X H. Design of portable nondestructive detector for chlorophyll content of plant leaves. Trans CSAM, 2019, 50(12):180-186 (in Chinese with English abstract).
[22] 唐星林, 金洪平, 周晨, 刘光正, 王丽艳. 镉胁迫对龙葵叶绿素荧光和光合生化特性的影响. 中南林业科技大学学报, 2019, 39(9):102-108.
Tang X L, Jin H P, Zhou C, Liu G Z, Wang L Y. Effects of cadmium stress on chlorophyll fluorescence and photosynthetic biochemical characteristics in leaves of Solanum nigrum. J Central South Univ For, 2019, 39(9):102-108 (in Chinese with English abstract).
[23] 刘星星. 镉胁迫下菊芋的生理响应及污染红壤改良的探究. 浙江师范大学硕士学位论文, 浙江金华, 2018.
Liu X X. Physiological Response of Helianthus tuberosus L. under Cadmium Stress and Improvement of Polluted Red Soil. MS Thesis of Zhejiang Normal University, Jinhua, Zhejiang, China, 2018 (in Chinese with English abstract).
[24] Xiong B, Wang Y, Zhang Y, Ma M M, Gao Y F, Zhou Z Y, Wang B Z, Wang T, Lv X L, Wang X, Wang J, Deng H H, Wang Z H. Alleviation of drought stress and the physiological mechanisms in Citrus cultivar (Huangguogan) treated with methyl jasmonate. Biosci Biotechnol Biochem, 2020, 84:1958-1965.
doi: 10.1080/09168451.2020.1771676
[25] 邵君伟. 茉莉酸和赤霉素在水稻幼苗响应镉毒害中的调控作用. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Shao J W. The Regulation of Jasmonic Acid and Gibberellin in Response to Cadmium Toxicity in Rice Seedlings. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[26] 单长卷, 徐新娟, 孙海丽, 马艳华. 茉莉酸对镉胁迫下玉米幼苗叶片生理特性的影响. 玉米科学, 2016, 24(3):99-102.
Shan C J, Xu X J, Sun H L, Ma Y H. Effects of jasmonic acid on the leaf physiological characteristics of maize seedlings under cadmium stress. J Maize Sci, 2016, 24(3):99-102 (in Chinese with English abstract).
[27] 麻云霞, 李钢铁, 梁田雨, 马媛, 闫晶秋子, 杨超. 外源H2O2对镉胁迫下酸枣幼苗生长及生理特性的缓解效应. 水土保持学报, 2019, 33(6):361-369.
Ma Y X, Li G T, Liang T Y, Ma Y, Yan J Q Z, Yang C. Alleviative effects of exogenous H2O2 on growth and physiological characteristics of Zizyphus jujuba seedlings under cadmium stress. J Soil Water Conserv, 2019, 33(6):361-369 (in Chinese with English abstract).
[28] 任秀娟, 朱东海, 吴海卿, 吴大付. 镉富集植物筛选研究. 资源开发与市场, 2014, 30:961-962.
Ren X J, Zhu D H, Wu H Q, Wu D F. Screening of cadmium enrichment plants. Resour Dev Market, 2014, 30:961-962 (in Chinese with English abstract).
[29] 王晓娟, 王文斌, 杨龙, 金梁, 宋瑜, 姜少俊, 秦兰兰. 重金属镉(Cd)在植物体内的转运途径及其调控机制. 生态学报, 2015, 35:7921-7929.
Wang X J, Wang W B, Yang L, Jin L, Song Y, Jiang S J, Qin L L. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant. Acta Ecol Sin, 2015, 35:7921-7929 (in Chinese with English abstract).
[30] 方继宇, 贾永霞, 张春梅, 张世熔, 徐小逊, 蒲玉琳, 李婷, 李云. 马缨丹对镉的生长响应及其富集、转运和亚细胞分布特点研究. 生态环境学报, 2014, 23:1677-1682.
Fang J Y, Jia Y X, Zhang C M, Zhang S R, Xu X X, Pu Y L, Li T, Li Y. Effects of cadmium on growth response of Lantana camara L. and its accumulation, translocation and subcellular distribution of Cd. Ecol Environ Sci, 2014, 23:1677-1682 (in Chinese with English abstract).
[31] Lei G J, Sun L, Sun Y, Zhu X F, Li G X, Zheng S J. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol, 2020, 62:218-227.
doi: 10.1111/jipb.v62.2
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[4] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[5] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[6] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[7] 山雨思, 辛正琦, 何潇, 代欢欢, 吴能表. 外源茉莉酸甲酯对UV-B胁迫下颠茄生物碱积累及TAs代谢途径调控的机制探究[J]. 作物学报, 2020, 46(12): 1894-1904.
[8] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[9] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[10] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[11] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[12] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
[13] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[14] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[15] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!