作物学报 ›› 2022, Vol. 48 ›› Issue (3): 682-694.doi: 10.3724/SP.J.1006.2022.14015
谭雪莲1(), 郭天文1,*(), 胡新元2, 张平良1, 曾骏1, 刘晓伟1
TAN Xue-Lian1(), GUO Tian-Wen1,*(), HU Xin-Yuan2, ZHANG Ping-Liang1, ZENG Jun1, LIU Xiao-Wei1
摘要:
本文探讨了土壤微生物对马铃薯连作的响应, 旨在揭示连作土壤退化的微生物特征。采用盆栽试验和MiSeq高通量测序技术相结合的方法, 以休耕(CK)和轮作(R_rh)为对照, 研究了马铃薯连作1年(1_rh)、3年(3_rh)和5年(5_rh)根际土壤微生物群落特征。结果表明, 与CK和轮作相比, 3_rh和5_rh土壤样品Ace指数、Chao指数、Shannon指数显著降低。与轮作相比, 马铃薯连作土壤细菌中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria)相对丰度较高, 土壤真菌中子囊菌门(Ascomycota)相对丰度较低。细菌群落中, 较轮作, 1_rh、3_rh、5_rh气微菌属(Aeromicrobium)的数量分别增加258.01%、625.93%、76.04%, 节杆菌属(Arthrobacter)分别增加245.42%、1258.12%、58.89%, 链霉菌属(Streptomyces)分别增加203.83%、116.74%、311.61%。真菌群落中, 较轮作, 3_rh镰孢属(Fusarium)数量增加了225.00%, 5_rh毛壳属(Chaetomium)数量降低了31.58 %, 1_rh、3_rh、5_rh久浩酵母属(Guehomyces)的数量分别降低55.40%, 58.14%, 78.37%; 壶菌属(Spizellomyces)在休耕和轮作土壤中数量较多, 而在连作3年和5年土壤中数量很少, 接近检测底限。说明马铃薯长期连作降低了土壤微生物多样性, 微生物优势种群发生改变, 土壤微生物群落结构失衡。
[1] | 张绪成, 王红丽, 于显枫, 候慧芝, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟间作种植马铃薯和豆科作物的水热及产量效应. 中国农业科学, 2016, 49:468-481. |
Zhang X C, Wang H L, Yu X F, Hou H Z, Fang Y J, Ma Y F. The study on the effect of potato and beans intercropping with whole field plastics mulching and ridge-furrow planting on soil thermal-moisture status and crop yield on semi-arid area. Sci Agric Sin, 2016, 49:468-481 (in Chinese with English abstract). | |
[2] | 周华兰, 彭亚丽, 李婷, 谢鹰飞, 唐丽梅, 王榕, 熊兴耀, 王万兴, 胡新喜. 马铃薯连作对土壤理化性质和生物学特性的影响. 湖南农业大学学报(自然科学版), 2019, 45:611-616. |
Zhou H L, Peng Y L, Li T, Xie Y F, Tang L M, Wang R, Xiong X Y, Wang W X, Hu X X. Effects of potato continuous cropping on soil physicochemical and biological properties. J Hunan Agric Univ (Nat Sci Edn), 2019, 45:611-616 (in Chinese with English abstract). | |
[3] |
Wu A L, Jiao X Y, Fan F F, Wang J S, Guo J, Dong E W, Wang L G, Shen X M. Bacillus amyloliquefaciens in altering the microbial composition Bacillus amyloliquefaciens in altering the microbial composition. Plant Growth Regul, 2019, 89:299-308.
doi: 10.1007/s10725-019-00533-y |
[4] | 杨敏, 和明东, 段杰, 郑元仙, 王继明, 钟宇, 黄飞燕, 童文杰, 邓小鹏, 莫笑晗, 陈小龙, 周厚发, 余磊, 何元胜. 生物炭对连作烤烟根际土壤酚酸类物质及微生物群落结构的影响. 福建农业学报, 2020, 35(1):103-110. |
Yang M, He M D, Duan J, Zheng Y X, Wang J M, Zhong Y, Huang F Y, Tong W J, Deng X P, Mo X H, Chen X L, Zhou H F, Yu L, He Y S. Effects of biochar addition on phenolic acids and microbial community in rhizosphere soil at continuous cropping field of tobacco. Fujian J Agric Sci, 2020, 35(1):103-110 (in Chinese with English abstract). | |
[5] | Egamberdieva D, Renella G, Wirth S, Islam R. Secondary salinity effects on soil microbial biomass. Trans CSAE, 2010, 46:445-449. |
[6] | Glick B R. Soil microbes and sustainable agriculture. Trans CSAE, 2018, 28:167-169. |
[7] |
Xu N, Tan G G, Wang H Y, Gai X P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol, 2016, 74:1-8.
doi: 10.1016/j.ejsobi.2016.02.004 |
[8] |
Gao J, Pei H, Xie H. Synergistic effects of organic fertilizer and corn straw on microorganisms of pepper continuous cropping soil in China. Bioengineered, 2020, 11:1258-1268.
doi: 10.1080/21655979.2020.1840753 |
[9] |
Zhang P, Chen X, Wei T, Yang Z, Jia Z K, Yang B P, Han Q F, Ren X L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res, 2016, 160:65-72.
doi: 10.1016/j.still.2016.02.006 |
[10] | 李瑞琴, 刘星, 邱慧珍, 张文明, 张春红, 王蒂, 张俊莲, 沈其荣. 发生马铃薯立枯病土壤中立枯丝核菌的荧光定量PCR快速检测. 草业学报, 2013, 22(5):136-144. |
Li R Q, Liu X, Qiu H Z, Zhang W M, Zhang C H, Wang D, Zhang J L, Shen Q R. Rapid detection of Rhizoctonis in rhizosphere soil of potato using real-time quantitative PCR. Acta Pratac Sin, 2013, 22(5):136-144 (in Chinese with English abstract). | |
[11] |
Yao H Y, Jiao X D, Wu F Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant Soil, 2006, 284:195-203.
doi: 10.1007/s11104-006-0023-2 |
[12] |
Xiong W, Zhao Q, Zhao J, Xun W, Li R, Zhang R, Wu H, Shen Q. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla grown soil as revealed by deep pyrosequencing. Microbial Ecol, 2015, 70:209-218.
doi: 10.1007/s00248-014-0516-0 |
[13] |
Perez-Brandan C, Arzeno J L, Huidobro J, Conforto C, Vargas- Gil S. The effect of crop sequences on soil microbial, chemical and physical indicators and its relationship with soybean sudden death syndrome (complex of Fusarium species). Spanish J Agric Res, 2014, 12:252-264.
doi: 10.5424/sjar/2014121-4654 |
[14] |
Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X, Yin H, Zhang C, Feng K, Deng Y. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem, 2017, 104:208-217.
doi: 10.1016/j.soilbio.2016.10.023 |
[15] |
Meriles J M, Gil S V, Conforto C, Figoni G, Lovera E, March G J, Guzmán C A. Soil microbial communities under different soybean cropping systems: characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res, 2009, 103:271-281.
doi: 10.1016/j.still.2008.10.008 |
[16] | 孟品品, 刘星, 邱慧珍, 张文明, 张春红, 王蒂, 张俊莲, 沈其荣. 连作马铃薯根际土壤真菌种群结构及其生物效应. 应用生态学报, 2012, 23:3079-3086. |
Meng P P, Liu X, Qiu H Z, Zhang W M, Zhang C H, Wang D, Zhang J L, Shen Q R. Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. Chin J Appl Ecol, 2012, 23:3079-3086 (in Chinese with English abstract). | |
[17] | 刘星, 邱慧珍, 王蒂, 张俊莲, 沈其荣. 甘肃省中部沿黄灌区轮作和连作马铃薯根际土壤真菌群落的结构性差异评估. 生态学报, 2015, 35:3938-3948. |
Liu X, Qiu H Z, Wang D, Zhang J L, Shen Q R. Evaluation on fungal community structure of rhizosphere soils of potato under rotation and continuous cropping systems in Yellow River irrigation areas of middle Gansu province. Acta Ecol Sin, 2015, 35:3938-3948 (in Chinese with English abstract). | |
[18] |
Mendes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev, 2013, 37:634-663.
doi: 10.1111/1574-6976.12028 |
[19] |
Berendsen R L, Pieterse M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends Plant Sci, 2012, 17:478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542 |
[20] | 沈宝云, 刘星, 王蒂, 梦品品, 张俊莲, 邱慧珍. 甘肃省中部沿黄灌区连作对马铃薯植株生理生态特性的影响. 中国生态农业学报, 2013, 21:689-699. |
Shen B Y, Liu X, Wang D, Meng P P, Zhang J L, Qiu H Z. Effects of continuous cropping on potato eco-physiological characteristics in the Yellow River irrigation area of the central Gansu Province. Chin J Eco-Agric, 2013, 21:689-699 (in Chinese with English abstract). | |
[21] | Oliver J D. The viable but nonculturable state in bacteria. J Microbiol, 2005, 43:93-100 |
[22] | 马玲, 马琨, 杨桂丽, 牛红霞, 代晓华. 马铃薯连作栽培对土壤微生物多样性的影响. 中国生态农业学报, 2015, 23:589-596. |
Ma L, Ma K, Yang G L, Niu H X, Dai X H. Effects of continuous potato cropping on the diversity of soil microorganisms. Chin J Eco-Agric, 2015, 23:589-596 (in Chinese with English abstract). | |
[23] | 马琨, 张丽, 杜茜, 宋乃平. 马铃薯连作栽培对土壤微生物群落的影响. 水土保持学报, 2010, 24(4):229-233. |
Ma K, Zhang L, Du Q, Song N P. Effect of potato continuous cropping on soil microorganism community structure and function. J Soil Water Conserv, 2010, 24(4):229-233 (in Chinese with English abstract). | |
[24] | 李国庆, 郭华春. 连作对马铃薯根际土壤细菌群落结构的影响. 分子植物育种, 2014, 12:914-928. |
Li G Q, Guo H C. Effect of potato continuous cropping on the rhizosphere soil bacteria community structure. Mol Plant Breed, 2014, 12:914-928 (in Chinese with English abstract). | |
[25] |
Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rDNA genes. Appl Environ Microbiol, 2006, 72:1719-1728.
doi: 10.1128/AEM.72.3.1719-1728.2006 |
[26] | 李昌明. 青藏高原多年冻土区土壤微生物及其与环境关系的研究. 兰州大学硕士学位论文, 甘肃兰州, 2012. |
Li C M. Phylogenetic and Functional Diversity of Bacterial Community in Tibet Plateau Permafrost Soils. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2012 (in Chinese with English abstract). | |
[27] |
Glaring M A, Vester J K, Lylloff J E, Al-Soud W A, Sørensen S J, Stougaard P. Microbial diversity in a permanently cold and alkaline environment in greenland. PLoS One, 2015, 10:e0124863.
doi: 10.1371/journal.pone.0124863 |
[28] |
Mendes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev, 2013, 37:634-663.
doi: 10.1111/1574-6976.12028 |
[29] | 张丽红, 符建平, 高丽红, 吕建. 不同蔬菜轮作对日光温室土壤微生物的影响. 中国农学通报, 2010, 26(1):140-144. |
Zhang L H, Fu J P, Gao L H, Lyu J. Effects of different rotation models on soil micro-organisms in greenhouse. Chin Agric Sci Bull, 2010, 26(1):140-144 (in Chinese with English abstract). | |
[30] | 李继平, 李敏权, 惠娜娜, 王立, 马永强, 漆永红. 马铃薯连作田土壤中主要病原真菌的种群动态变化规律. 草业学报, 2013, 22(4):147-152. |
Li J P, Li M Q, Hui N N, Wang L, Ma Y W, Qi Y H. Population dynamics of main fungal pathogens in soil of continuously cropped potato. Acta Pratac Sin, 2013, 22(4):147-152 (in Chinese with English abstract). | |
[31] |
Zhang J X, Xue A G, Zhang H J, Nagasawa A E, Tambong J T. Response of soybean cultivars to root rot caused by Fusarium species. Can J Plant Sci, 2010, 90:767-776.
doi: 10.4141/CJPS09133 |
[32] |
Wang J L, Li X L, Zhang J L, Yao T, Wei D. Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture. Plant Ecol, 2013, 213:1883-1892.
doi: 10.1007/s11258-012-0088-3 |
[33] |
Kamper J, Kahmann R, Bolker M, Ma L J. Ustilago maydis Ustilago maydis. Nature, 2006, 444:97-101.
doi: 10.1038/nature05248 |
[34] | Huang L F, Song L X, Xia X J, Mao W H, Shi Z. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. Trans CSAE, 2013, 39:232-242. |
[1] | 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284. |
[2] | 林志敏, 秦贤金, 吴红淼, 庞孜钦, 林文雄. 不同太子参品种对连作胁迫差异响应及种内间作效应分析[J]. 作物学报, 2022, 48(9): 2351-2365. |
[3] | 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668. |
[4] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[5] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[6] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[7] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[8] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[9] | 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545. |
[10] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[11] | 王亚梁, 朱德峰, 张玉屏, 陈若霞, 向镜, 陈惠哲, 谌江华, 汪峰. 连作杂交晚稻精准条播长秧龄机插的生长及产量特性分析[J]. 作物学报, 2022, 48(1): 215-225. |
[12] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[13] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[14] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[15] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
|