欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1129-1140.doi: 10.3724/SP.J.1006.2022.12010

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用

朱峥1,2(), 王田幸子1,2, 陈悦1,2, 刘玉晴1,2, 燕高伟1,2, 徐珊1,2, 马金姣1,2, 窦世娟1,2, 李莉云1,2,*(), 刘国振1,2,*()   

  1. 1河北农业大学生命科学学院, 河北保定 071001
    2河北省植物生理与分子病理学重点实验室, 河北保定 071001
  • 收稿日期:2021-02-10 接受日期:2021-09-09 出版日期:2022-05-12 网络出版日期:2021-10-19
  • 通讯作者: 李莉云,刘国振
  • 作者简介:E-mail: zhuzheng_mbb@163.com
  • 基金资助:
    国家自然科学基金项目资助(31171528);国家自然科学基金项目资助(31400700)

Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae

ZHU Zheng1,2(), WANG Tian-Xing-Zi1,2, CHEN Yue1,2, LIU Yu-Qing1,2, YAN Gao-Wei1,2, XU Shan1,2, MA Jin-Jiao1,2, DOU Shi-Juan1,2, LI Li-Yun1,2,*(), LIU Guo-Zhen1,2,*()   

  1. 1College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
    2Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071001, Hebei, China
  • Received:2021-02-10 Accepted:2021-09-09 Published:2022-05-12 Published online:2021-10-19
  • Contact: LI Li-Yun,LIU Guo-Zhen
  • Supported by:
    National Natural Science Foundation of China(31171528);National Natural Science Foundation of China(31400700)

摘要:

白叶枯病是一种严重影响水稻产量的细菌性病害。Xa21是第一个克隆的抗白叶枯病基因, 具有广谱抗性, 在水稻抗病育种中被广泛应用。转录因子的鉴定对解析Xa21介导的水稻抗白叶枯病分子机制具有重要意义。本研究构建了Xa21背景下的WRKY68-RNAi转基因水稻。与受体材料4021相比, 转基因水稻中WRKY68蛋白质丰度下调, 接种白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)后抗病性下降, 证明WRKY68基因在Xa21介导的抗白叶枯病反应中发挥正调控作用。此外, 转基因受体材料4021和感病对照TP309接种后不同时期和部位叶片中WRKY68的蛋白质丰度没有显著差异, 表明WRKY68蛋白质的表达不受抗病基因Xa21和病原物Xoo诱导, 推测其功能主要是调控下游基因的表达。WRKY68-RNAi转基因水稻接种后, PR1A、PR5、PR10A、PR-pha和PAL1等病程相关蛋白质表达丰度发生变化, 表明相关基因可能在WRKY68基因的调控下参与下游抗病反应。

关键词: 水稻, 白叶枯病, 抗病基因Xa21, WRKY转录因子, 病程相关蛋白质

Abstract:

Leaf blight is a bacterial disease of rice which leads to heavy yield losses. Xa21 which harbors broad spectrum resistance to leaf blight is the first resistant gene cloned in rice and is widely used in rice breeding program. The identification of transcription factor involved in Xa21-mediated resistance to bacterial leaf blight is of great significance. In this study, transgenic WRKY68-RNAi lines with reduced expression level of WRKY68 protein in the background of Xa21 were generated. The WRKY68-RNAi transgenic lines showed reduced resistance to Xanthomonas oryzae pv. oryzae (Xoo), indicating that WRKY68 played a positive role in Xa21-mediated resistance in rice. No detectable changes of WRKY68 protein abundance in leaves at different stages and positions after inoculation were identified by Western blot, indicating that the expression of WRKY68 protein were independent of Xa21 and Xoo, and thus WRKY68 gene may function as a transcription factor to regulate downstream genes. It was further found that the abundance of a number of pathogenesis-related proteins, including PR1A, PR5, PR10A, PR-pha, and PAL1 were dramatically changed in WRKY68-RNAi transgenic lines when inoculated with Xoo, suggested that these pathogenesis-related proteins were regulated by WRKY68 and the corresponding genes were involved in the downstream defenses responses.

Key words: rice, bacterial leaf blight, resistance gene Xa21, WRKY transcription factor, pathogenesis-related protein

图1

WRKY68-RNAi转基因株系的鉴定 R#1、R#2和R#3: 独立的WRKY68-RNAi转基因株系; CK: 4021 (转基因受体); 1~8: T2代不同的转基因植株; WRKY68: 抗WRKY68抗体识别条带; HSP: 抗HSP82抗体识别条带作为上样量标志。"

图2

WRKY68-RNAi转基因株系的农艺性状分析 A: 株高; B: 分蘖数; C: 千粒重。CK: 4021 (转基因受体); R#1、R#2和R#3: 独立的WRKY68-RNAi转基因株系。用Excel软件的数据统计分析对数据进行t-检验(Student’s t-test), **表示平均值间差异极显著(P < 0.01), 误差线标示标准差(SD)。"

图3

WRKY68-RNAi转基因株系对接种Xoo的反应 A: 接种Xoo 12 d的叶片照片。B: 叶片病斑长度进展图。C: 接种Xoo 12 d叶片病斑长度柱形图。箭头所指为病斑位置。**代表极显著差异(P < 0.01)。标尺为1 cm。R#1、R#2和R#3: 独立的WRKY68-RNAi转基因株系; TP309: 野生型; 4021: 表达Xa21的转基因TP309植株。"

附图1

水稻接种叶片中Xoo蛋白质丰度 采集水稻叶片, 提取总蛋白质后, 通过SDS-PAGE分离后转膜, 一抗用抗-Xoo抗体检测。R#2、R#3: WRKY68-RNAi转基因株系; TP309: 野生型; 4021: 表达Xa21的转基因TP309植株。"

附图2

水稻叶片接种Xoo后病程相关蛋白质的表达特征 以接种5 d、6 d的叶片(病斑线±1 cm)为材料, 通过SDS-PAGE或者Tricine-SDS-PAGE分离总蛋白质, 红框内为正文(图6)展示的部分。PR1A: 抗PR1a抗体识别条带; PR2: 抗PR2抗体识别条带; PR5: 抗PR5抗体识别条带; PR10A: 抗PR10a抗体识别条带; PR-pha: 抗PR-pha抗体识别条带; PAL1: 抗PAL1抗体识别条带; HSP: 抗HSP82抗体识别条带。R#1、R#2和R#3: WRKY68-RNAi转基因株系; TP309: 野生型; 4021: 表达Xa21的转基因TP309植株。"

图4

水稻接种叶片中Xoo蛋白质丰度 采集接种后水稻全叶片, 提取总蛋白质后用SDS-PAGE分离, 转膜后用抗-Xoo抗体检测(附图1), 用化学发光成像仪和Sage Capture软件检测WB信号, 用Lane1D软件采集WB信号, 计算3次实验的平均值和方差, 误差线表示标准差SD。以OD600为0.5的Xoo菌液蛋白质做为共同内参CR (common reference)归一化不同WB间的信号强度。R#2、R#3: 独立的WRKY68-RNAi转基因株系; TP309: 野生型; 4021: 表达Xa21的转基因TP309植株。"

图5

水稻WRKY68蛋白质接种Xoo后的表达特征 A: WRKY68蛋白质在接种后不同时间点的表达特征; B: 接种后不同部位取材模式图; C: WRKY68蛋白质在接种后不同部位的表达特征。WRKY68: 抗WRKY68抗体识别的条带; HSP: 抗HSP82抗体识别的条带。TP309: 野生型; 4021: 表达Xa21的转基因TP309植株。"

图6

水稻叶片接种Xoo后病程相关蛋白质的表达特征 PR1A: 抗PR1A抗体识别条带; PR2: 抗PR2抗体识别条带; PR5: 抗PR5抗体识别条带; PR10A: 抗PR10A抗体识别条带; PR-pha: 抗PR-pha抗体识别条带; PAL1: 抗PAL1抗体识别条带; HSP: 抗HSP82抗体识别条带作为上样量标志。R#1、R#2和R#3: 独立的WRKY68- RNAi转基因株系; TP309: 野生型; 4021: 表达Xa21的转基因TP309植株。"

[1] Liu W, Liu J L, Triplett L, Leach J E, Wang G L. Novel insights into the rice innate immunity against pathogens. Annu Rev Phytopathol, 2014, 52:213-241.
doi: 10.1146/phyto.2014.52.issue-1
[2] Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 447:323-329.
[3] Shen Y W, Sharma P, Silva F G, Ronald P C. The Xanthomonas oryzae pv. oryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5’-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol Microbiol, 2002, 44:37-48.
doi: 10.1046/j.1365-2958.2002.02862.x
[4] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P C. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270:1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370
[5] Pruitt R N, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson M R, Chan L J G, Luu D D, Chen H, Bahar O, Daudi A, Ruan D L, Majumder D, Chern M, Kalbacher H, Midha S, Patil P B, Sonti R V, Petzold C J, Liu C C, Brodbelt J S, Felix G, Ronald P C. The rice immune receptor XA21 recognizes a tyrosine- sulfated protein from a Gram-negative bacterium. Sci Adv, 2015, 1:1500245.
doi: 10.1126/sciadv.1500245 pmid: 26601222
[6] Wang Y S, Pi L Y, Chen X H, Chakrabarty P K, Jiang J, Leon A L D, Liu G Z, Li L C, Benny U, Oard J, Ronald P C, Song W Y, Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell, 2006, 18:3635-3646.
doi: 10.1105/tpc.106.046730
[7] Peng Y, Bartley L E, Chen X W, Dardick C, Chern M, Ruan R, Canlas P E, Ronald P C. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant, 2008, 1:446-458.
doi: 10.1093/mp/ssn024
[8] Park C J, Ronald P C. Cleavage and nuclear localization of the rice XA21 immune receptor. Nat Commun, 2012, 3:920.
doi: 10.1038/ncomms1932
[9] Park C J, Peng Y, Chen X W, Dardick C, Ruan D L, Bart R, Canlas P E, Ronald P C. Rice XB15, a Protein Phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol, 2008, 6:231.
[10] Park C J, Wei T, Sharma R, Ronald P C. Overexpression of rice auxilin-like protein, XB21, induces necrotic lesions, up-regulates endocytosis-related genes, and confers enhanced resistance to Xanthomonas oryzae pv. oryzae. Rice, 2017, 10:27.
doi: 10.1186/s12284-017-0166-1
[11] Chen X W, Chern M, Canlas P E, Ruan D L, Jiang C Y, Ronald P C, Baulcombe D C. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci USA, 2010, 107:8029-8034.
doi: 10.1073/pnas.0912311107
[12] Jiang Y N, Chen X H, Ding X D, Wang Y S, Chen Q, Song W Y. The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance. Plant J, 2013, 73:814-823.
doi: 10.1111/tpj.2013.73.issue-5
[13] Chen X W, Zuo S M, Schwessinger B, Chern M, Canlas P E, Ruan D L, Zhou X G, Wang J, Daudi A, Petzold C J, Heazlewood J L, Ronald P C. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol Plant, 2014, 7:874-892.
doi: 10.1093/mp/ssu003
[14] Park C J, Bart R, Chern M, Canlas P E, Bai W, Ronald P C. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One, 2010, 5:9262.
[15] Agarwal P, Reddy M P, Chikara J. WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep, 2011, 38:3883-3896.
doi: 10.1007/s11033-010-0504-5
[16] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5:199-206.
pmid: 10785665
[17] Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate- dependent signaling. Mol Plant Microbe Interact, 2007, 20:492-499.
doi: 10.1094/MPMI-20-5-0492
[18] Peng Y, Bartley L E, Canlas P, Ronald P C. OsWRKY IIa transcription factors modulate rice innate immunity. Rice, 2010, 3:36-42.
doi: 10.1007/s12284-010-9039-6
[19] Cheng H T, Liu H B, Deng Y, Xiao J H, Li X H, Wang S P. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol, 2015, 167:1087-1099.
doi: 10.1104/pp.114.256016
[20] Hwang S H, Kwon S I, Jang J Y, Fang I L, Lee H, Choi C, Park S, Ahn I, Bae S C, Hwang D J. OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae. Plant Cell Rep, 2016, 35:1975-1985.
doi: 10.1007/s00299-016-2012-0
[21] Liu X Q, Bai X Q, Wang X J, Chu C C. OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol, 2007, 164:969-979.
doi: 10.1016/j.jplph.2006.07.006
[22] Son S, An H K, Seol Y J, Park S R, Im J H. Rice transcription factor WRKY114 directly regulates the expression of OsPR1a and chitinase to enhance resistance against Xanthomonas oryzae pv. oryzae. Biochem Bioph Res Commu, 2020, 533:1262-1268.
[23] Du D, Zhang C W, Xing Y D, Lu X, Cai L J, Yun H, Zhang Q L, Zhang Y Y, Chen X L, Liu M M, Sang X C, Ling Y H, Yang Z L, Li Y F, Lefebvre B, He G H. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Plant Biotechnol J, 2021, 19:1052-1064.
doi: 10.1111/pbi.v19.5
[24] Vo K T X, Kim C Y, Hoang T V, Lee S K, Shirsekar G, Seo Y S, Lee S W, Wang G L, Jeon J S. OsWRKY67 plays a positive role in basal and XA21-mediated resistance in rice. Front Plant Sci, 2018, 8:2220.
doi: 10.3389/fpls.2017.02220
[25] Tao Z, Liu H B, Qiu D Y, Zhou Y, Li X H, Xu C G, Wang S P. A pair of allelic WRKY genes play opposite role in rice-bacteria interactions. Plant Physiol, 2009, 151:936-948.
doi: 10.1104/pp.109.145623
[26] Seo Y S, Chern M, Bartley L E, Han M, Jung K H, Lee I, Walia H, Richter T, Xu X, Cao P J, Bai W, Ramanan R, Amonpant F, Arul L, Canlas P E, Ruan R, Park C J, Chen X W, Hwang S, Jeon J S, Ronald P C. Towards establishment of a rice stress response interactome. PLoS Genet, 2011, 7:e1002020.
[27] Choi C, Hwang S H, Fang I R, Kwon S I, Park S R, Ahn I, Kim J B, Hwang D J. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens. New Phytol, 2015, 208:846-859.
doi: 10.1111/nph.2015.208.issue-3
[28] Yang S, Zhou L, Miao L Y, Shi J N, Sun C Q, Fan W, Lan J P, Chen H, Liu L J, Dou S J, Liu G Z, Li L Y. The expression and binding properties of the rice WRKY68 protein in the Xa21-mediated resistance response to Xanthomonas oryzae pv. oryzae. J Integr Agric, 2016, 15:2451-2460.
doi: 10.1016/S2095-3119(15)61265-5
[29] Li X M, Bai H, Wang X Y, Li L Y, Cao Y H, Wei J, Liu Y M, Liu L J, Gong X D, Wu L, Liu S Q, Liu G Z. Identification and validation of rice reference proteins for western blotting. J Exp Bot, 2011, 62:4763-4772.
doi: 10.1093/jxb/err084
[30] Guo M C, Lan J P, Shi J N, Guan M L, Wei J, Liu L J, Li L Y, Dou S J, Liu G Z. Western Blot detection of Xanthomonas oryzae pv. oryzae in rice. J Plant Pathol Microb, 2015, (S4):005.
[31] Wu Q, Hou M M, Li L Y, Liu L J, Hou Y, Liu G Z. Induction of pathogenesis-related proteins in rice bacterial resistant gene XA21-mediated interactions with Xanthomonas oryzae pv. oryzae. J Plant Pathol, 2011, 93:455-459.
[32] Hou M M, Xu W J, Bai H, Liu Y M, Li L Y, Liu L J, Liu B, Liu G Z. Characteristic expression of rice pathogenesis-related proteins in rice leaves during interactions with Xanthomonas oryzae pv. oryzae. Plant Cell Rep, 2012, 31:895-904.
doi: 10.1007/s00299-011-1210-z
[33] 陈悦, 王田幸子, 杨烁, 张彤, 马金姣, 燕高伟, 刘玉晴, 周艳, 史佳楠, 兰金苹, 魏健, 窦世娟, 刘丽娟, 杨明, 李莉云, 刘国振. 水稻转录因子OsWRKY68蛋白质的表达特征及其功能特性. 中国农业科学, 2019, 52:2021-2032.
Chen Y, Wang T X Z, Yang S, Zhang T, Ma J J, Yan G W, Liu Y Q, Zhou Y, Shi J N, Lan J P, Wei J, Dou S J, Liu L J, Yang M, Li L Y, Liu G Z. Expression profiling and functional characterization of rice transcription factor OsWRKY68. Sci Agric Sin, 2019, 52:2021-2032.
[34] Chen Q, Huang X E, Chen X H, Shamsunnaher, Song W Y. Reversible activation of XA21-mediated resistance by temperature. Eur J Plant Pathol, 2018, 153:1177-1184.
doi: 10.1007/s10658-018-01634-6
[35] Ross C A, Liu Y, Shen Q X J. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol, 2007, 49:827-842.
doi: 10.1111/jipb.2007.49.issue-6
[36] Choi N Y, Lee E, Lee S G, Choi C H, Park S R, Ahn I, Bae S C, Hwang C H, Hwang D J. Genome-wide expression profiling of OsWRKY superfamily genes during infection with Xanthomonas oryzae pv. oryzae using real-time PCR. Front Plant Sci, 2017, 8:1628.
doi: 10.3389/fpls.2017.01628
[37] Tariq R, Wang C L, Qin T F, Xu F F, Tang Y C, Gao Y, Ji Z Y, Zhao K J. Comparative transcriptome profiling of rice near- isogenic line carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae. Int J Mol Sci, 2018, 19:717.
doi: 10.3390/ijms19030717
[38] Nuruzzaman M, Sharoni A M, Satoh K, Kumar A, Leung H, Kikuchi S. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation. J Plant Physiol, 2014, 171:2-13.
doi: 10.1016/j.jplph.2013.09.010
[39] Satoh K, Saji S, Ito S, Shimizu H, Saji H, Kikuchi S. Gene response in rice plants treated with continuous fog influenced by pH, was similar to that treated with biotic stress. Rice, 2014, 7:10.
doi: 10.1186/s12284-014-0010-9
[40] Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Srinivasan R. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008, 49:865-879.
doi: 10.1093/pcp/pcn061 pmid: 18413358
[41] Qiu D Y, Xiao J, Xie W B, Cheng H T, Li X H, Wang S P. Exploring transcriptional signaling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol, 2009, 9:74.
doi: 10.1186/1471-2229-9-74
[42] Zhou C L, Lin Q B, Lan J, Zhang T Y, Liu X, Miao R, Mou C L, Nguyen T, Wang J C, Zhang X, Zhou L, Zhu X J, Wang Q, Zhang X, Guo X P, Liu S J, Jiang L, Wan J M. WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response. Front Plant Sci, 2020, 11:691.
doi: 10.3389/fpls.2020.00691
[43] Zhang C Q, Xu Y, Lu Y, Yu H X, Gu M H, Liu Q Q. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta, 2011, 234:541-554.
doi: 10.1007/s00425-011-1423-y
[44] Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G S, Muthukrishnan S, Datta S K. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet, 1999, 98:1138-1145.
doi: 10.1007/s001220051178
[45] Zhou X G, Liao H C, Chern M, Yin J J, Chen Y F, Wang J P, Zhu X B, Chen Z X, Yuan C, Zhao W, Wang J, Li W T, He M, Ma B, Wang Y W, Wang W M, Wu X J, Li P, Zhu L H, Li S G, Ronald P C, Chen X W. Loss of function of a rice TPR-domain RNA- binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA, 2018, 115:3174-3179.
doi: 10.1073/pnas.1705927115
[46] Solekh R, Susanto F A, Joko T, Nuringtyas T R, Purwestri Y A. Phenylalanine ammonia lyase (PAL) contributes to the resistance of black rice against Xanthomonas oryzae pv. oryzae. J Plant Pathol, 2019, 426:359-365.
[47] Gan Q, Bai H, Zhao X F, Tao Y, Zeng H P, Han Y N, Song W Y, Zhu L H, Liu G Z. Transcriptional characteristics of Xa21- mediated defense responses in rice. J Integr Plant Biol, 2011, 53:300-311.
doi: 10.1111/j.1744-7909.2011.01032.x
[48] Cho M H, Lee S W. Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci, 2015, 16:29120-29133.
doi: 10.3390/ijms161226152
[49] Peng X X, Hu Y J, Tang X K, Zhou P L, Deng X B, Wang H H, Guo Z J. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta, 2012, 236:1485-1498.
doi: 10.1007/s00425-012-1698-7
[50] Choi N, Im J H, Lee E, Lee J, Choi C, Park S R, Hwang D J. OsWRKY10 transcriptional regulatory cascades are involved in basal defense and Xa1-mediated resistance. J Exp Bot, 2020, 71:3735-3748.
doi: 10.1093/jxb/eraa135
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[9] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[10] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[15] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!