欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1119-1128.doi: 10.3724/SP.J.1006.2022.12022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

OsSAMS1在水稻稻瘟病抗性中的功能研究

杨德卫1,2(), 王勋1(), 郑星星1, 项信权1, 崔海涛1, 李生平1,*(), 唐定中1,*()   

  1. 1福建农林大学农学院 / 福建省作物设计育种重点实验室 / 福建农林大学植物免疫研究中心, 福建福州 350002
    2福建省农业科学院水稻研究所; 福建福州 350018
  • 收稿日期:2021-04-02 接受日期:2021-09-09 出版日期:2022-05-12 网络出版日期:2021-10-18
  • 通讯作者: 李生平,唐定中
  • 作者简介:杨德卫, E-mail: dewei-y@163.com;
    王勋, E-mail: 1448293617@qq.com;第一联系人:**同等贡献
  • 基金资助:
    福建省属公益类项目(2020R11010016-3);福建省自然科学基金项目(2019J01424);福建省科技重大专项专题资助(2020NZ08016)

Functional studies of rice blast resistance related gene OsSAMS1

YANG De-Wei1,2(), WANG Xun1(), ZHENG Xing-Xing1, XIANG Xin-Quan1, CUI Hai-Tao1, LI Sheng-Ping1,*(), TANG Ding-Zhong1,*()   

  1. 1College of Agriculture, Fujian Provincial Key Laboratory of Crop Breeding by Design, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, Fujian, China
  • Received:2021-04-02 Accepted:2021-09-09 Published:2022-05-12 Published online:2021-10-18
  • Contact: LI Sheng-Ping,TANG Ding-Zhong
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Special Fund for Agro-scientific Research in the Public Interest of Fujian Province(2020R11010016-3);Natural Science Foundation of Fujian Province(2019J01424);Major Science and Technology Projects of Fujian Province(2020NZ08016)

摘要:

稻瘟病是水稻最重要的病害之一, 对农业生产造成巨大的经济损失。研究表明, 水稻中S-腺苷-L-甲硫氨酸合成酶OsSAMS1参与了水稻衰老相关的进程, 我们实验室前期利用转录组测序分析发现, OsSAMS1基因的表达水平受稻瘟病菌诱导后明显提高。然而, OsSAMS1是否参与水稻的免疫反应, 尚未明确。基于此, 本研究选取野生型ZH11为背景材料, 通过构建OsSAMS1基因敲除突变体来探究该基因在水稻抗病中的功能。结果表明, OsSAMS1主要在水稻叶片中表达; 且其表达明显受稻瘟病菌侵染所诱导。亚细胞定位结果显示, OsSAMS1在细胞膜、细胞质和细胞核内均有表达。通过接种稻瘟病菌发现, 与对照相比, 2个等位敲除突变体ossams1-1ossams1-2均表现为更加感病, 且体内病程相关基因的表达也明显更低, 同时突变体中乙烯合成相关基因的表达也受到明显抑制。综上所述, OsSAMS1参与了水稻的免疫反应, 且正调控水稻稻瘟病的抗性。本研究为深入揭示OsSAMS1在稻瘟病免疫反应的分子机理奠定了基础, 并为稻瘟病抗病育种研究提供了基因资源。

关键词: 水稻, 稻瘟病, OsSAMS1基因, 乙烯, 功能研究

Abstract:

Rice blast is one of the most devastating diseases in rice, which causes great economic losses to agricultural production. It has been reported that S-Adenosyl-l-Mmethionine Synthetase 1 (OsSAMS1) is involved in the process of senescence in rice. Transcriptome sequencing analysis showed that the relative expression level of OsSAMS1 was significantly increased after inoculation with Magnaporthe oryzae (M. oryzae). However, it remains unclear whether OsSAMS1 is involved in rice immunity. To verify this, we constructed the knock-out mutants of OsSAMS1 in the wild type variety ZH11. The results showed that OsSAMS1 was mainly expressed in rice leaves, and its expression was significantly induced by M. oryzae inoculation. Subcellular localization revealed that OsSAMS1 was distributed in the plasma membrane, cytoplasm, and nucleus. Compared to the wild type, the two knockout mutants, ossams1-1 and ossams1-2, displayed enhanced susceptibility upon M. oryzae infection, and the expression of pathogenesis-related (PR) genes was significantly inhibited. In addition, ethylene synthesis-related genes were also dramatically decreased in both two mutants. These results suggested that OsSAMS1 was involved in rice immune response and positively regulated rice blast resistance, which lays a foundation for further revealing the molecular mechanism of OsSAMS1 in plant immunity and provides genetic resources for rice breeding of blast resistance.

Key words: rice, rice blast disease, OsSAMS1, ethylene, function research

表1

研究OsSAMS1所用引物信息"

引物名称
Primer name
前引物
Forward sequence (5′-3′)
后引物
Reverse sequence (5′-3′)
PR1a CGTGTCGGCGTGGGTGT GGCGAGTAGTTGCAGGTGATG
PR5 CAACAGCAACTACCAAGTCGTCTT CAAGGTGTCGTTTTATTCATCAACTTT
PR6 CAACAGCAACTACCAAGTCGTCTT CAAGGTGTCGTTTTATTCATCAACTTT
PR10 CCCTGCCGAATACGCCTAA CTCAAACGCCACGAGAATTTG
OsACS1 ACCAAGATGTCCAGCTTCGG GAGGAGGTACTGCGTCTGGG
OsACS2 GGAATAAAGCTGCTGCCGAT TGAGCCTGAAGTCGTTGAAGC
OsACS4 GATGTTGCGCTGGAGAGGATA TTCCCAATTGTTGCTTTGCA
OsACS6 ACAATCAGGCAAAGAAGCGAG TTGGATATGAGAACCCCACGA
SAMS1-GFP ATTTGGAGAGGACAGGGTACCATGGCCGCACTTGATACCTTC AGTGTCGACTCTAGAGGATCCGGCAGAAGGCTTCTCCCACT
SAMS1-qRT-PCR TTCTCTGGCAAGGACCCAAC GGACACCGATGGCGTATGAT
Ubiquitin AACCAGCTGAGGCCCAAGA ACGATTGATTTAACCAGTCCATGA
gRNAs-sams1-1 GTGAGACCTGCACCAAGACA GAGATGAGGACGGTGTGGAC
gRNAs-sams1-2 GTGAGACCTGCACCAAGACA GAGATGAGGACGGTGTGGAC

图1

稻瘟病菌Guy11侵染后OsSAMS1的表达变化 A: 对稻瘟病菌侵染前和侵染后12、24和36 h后的样品进行转录组测序分析, 发现OsSAMS1明显受稻瘟病菌侵染而诱导表达; B: 对稻瘟病菌侵染前和侵染后12、24、48和72 h后的样品进行qRT-PCR分析, 发现与水处理对照相比, 稻瘟病菌侵染后OsSAMS1的表达水平明显升高, 侵染24 h后达到最高。"

图2

OsSAMS1的时空表达模式 利用qRT-PCR对生长2周、4周和6周水稻的根、茎、叶, 0.5~1.0 cm、1~3 cm、3~5 cm和5~10 cm的小穗, 萌发和成熟的种子及愈伤组织中OsSAMS1的表达水平进行分析。误差线表示从3个独立的样本获得数值的标准偏差。"

图3

ossams1-1 (A)和ossams1-2 (B)敲除突变体的鉴定"

图4

ZH11、ossams1-1和ossams1-2的生长发育表型 对正常生长灌浆期的水稻进行表型观察, 标尺为10 cm。"

表2

野生型与2个敲除系在株高、穗长和千粒重等主要农艺性状比较"

性状Trait ZH11 ossams1-1 ossams1-2
株高 Plant height (cm) 99.82 ± 1.86 85.94 ± 1.76** 86.12 ± 1.92**
穗长 Panicle length (cm) 23.15 ± 1.32 18.85 ± 1.41* 18.96 ± 1.31*
有效穗数 Number of effective panicle 9.20 ± 1.04 7.84 ± 1.02* 8.11 ± 1.01*
每穗颖花数 Spikelets per panicle 144.46 ± 4.26 122.26 ± 5.16* 120.16 ± 5.06*
结实率 Seed setting rate (%) 95.32 ± 1.16 96.12 ± 1.06 96.02 ± 1.32
千粒重 Thousand-grain weight (g) 26.62 ± 0.46 26.22 ± 0.52 26.82 ± 0.51
粒长 Grain length (mm) 7.92 ± 0.11 7.89 ± 0.12 7.88 ± 0.11
粒宽 Grain width (mm) 3.62 ± 0.08 3.68 ± 0.09 3.60 ± 0.06

图5

ossams1-1和ossams1-2与对照ZH11相比更感稻瘟病菌 A: 喷雾接种Guy11后, ossams1-1和ossams1-2植株比ZH11植株产生更多的病斑; B: 发病叶片中的真菌生物量分析, 星号代表显著差异(*: P < 0.05, **: P < 0.01, 采用t检验)。"

图6

ossams1-1、ossams1-2和ZH11中病程相关基因的表达分析 图中A、B、C、D分别表示利用qRT-PCR检测接种稻瘟病菌Guy11后, ossams1-1、ossams1-2和ZH11中病程基因PR1a、PR5、PR6和PR10转录本的积累情况(*: P < 0.05; **: P < 0.01)."

图7

接菌前后ossams1突变体与野生型ZH11中乙烯合成相关基因的表达分析 图中A、B、C、D分别代表OsACS1、OsACS2、OsACS4和OsACS6在稻瘟病菌诱导前后ossams1突变体与野生型ZH11中的表达变化情况(*: P < 0.05, **: P < 0.01, 采用t检验)。"

图8

OsSAMS1的亚细胞定位 利用激光共聚焦显微镜观察OsSAMS1-GFP在烟草细胞中的表达部位, 表明OsSAMS1-GFP在细胞核、细胞质和细胞膜内均有表达, 标尺为20 μm。"

图9

OsSAMS1在植物中的进化树分析 利用BLAST分析在NCBI、RGAP和TAIR蛋白数据库中对OsSAMS1进行同源蛋白搜索, 获得获得LOC_Os01g18860和LOC_Os01g22010基因编码的2个同源蛋白, 拟南芥中2个同源蛋白AtSAM1和AtSAM2, 以及玉米、高粱、黍稷和粟中的SAMS1蛋白, 然后利用MEGA7.0软件进行进化树分析。"

[1] Zhang N, Luo J, Rossman A Y, Aoki T, Chuma I, Crous P W, Dean R, de Vries R P, Donofrio N, Hyde K D, Lebrun M H, Talbot N J, Tharreau D, Tosa Y, Valent B, Wang Z H, Xu J R. Generic names in Magnaporthales. IMA Fung, 2016, 7:155-159.
[2] Li W T, Chern M S, Yin J J, Wang J, Chen X W. Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol, 2019, 50:114-120.
doi: 10.1016/j.pbi.2019.03.015
[3] Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Tharreau D, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355:962-965.
doi: 10.1126/science.aai8898
[4] Yang D W, Li S P, Lu L, Fang J B, Wang W, Cui H T, Tang D Z. Identification and application of the Pigm-1 gene in rice disease-resistance breeding. Plant Biol, 2020, 22:1022-1029.
doi: 10.1111/plb.v22.6
[5] Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19:1216-1228.
doi: 10.1094/MPMI-19-1216
[6] Zhu X Y, Chen S, Yang J Y, Zhou S C, Zeng L X, Han J L, Su J, Wang, Pan Q H. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet, 2012, 124:1295-1304.
doi: 10.1007/s00122-012-1787-9
[7] Jiang N, Li Z Q, Wu J, Wang Y, Wu L Q, Wang S H, Wang D, Wen T, Liang Y, Sun P Y, Liu J L, Dai L Y, Wang Z L, Wang C, Luo M Z, Liu X L, Wang G L. Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson. Rice, 2012, 5:29.
doi: 10.1186/1939-8433-5-29 pmid: 27234247
[8] Su J, Wang W J, Han J L, Chen S, Wang C Y, Zeng L X, Feng A Q, Yang J Y, Zhou B, Zhu X Y. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet, 2015, 128:2213-2225.
doi: 10.1007/s00122-015-2579-9
[9] Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Tharreau D, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355:962-965.
doi: 10.1126/science.aai8898
[10] Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet, 2010, 11:539-548.
[11] Wang W, Feng B M, Zhou J M, Tang D Z. Plant immune signaling: advancing on two frontiers. J Integr Plant Biol, 2020, 62:2-24.
doi: 10.1111/jipb.v62.1
[12] 杨德卫, 李生平, 崔海涛, 邹声浩, 王伟. 寄主植物与病原菌免疫反应的分子遗传基础. 遗传, 2020, 42:278-286.
Yang D W, Li S P, Cui H T, Zou S H, Wang W. Molecular genetic mechanisms of interaction between host plants and pathogens. Hereditas(Beijing), 2020, 42:278-286 (in Chinese with English abstract).
[13] Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444:323-329.
doi: 10.1038/nature05286
[14] Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou J M, He S Y, Xin X F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592:105-109.
[15] Ngou B P M, Ahn H K, Ding P T, Jones J D G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592:110-115.
[16] Li W T, Chern M S, Yin J J, Wang J, Chen X W. Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol, 2019, 50:114-120
doi: 10.1016/j.pbi.2019.03.015
[17] Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, Molinaro A, Kaku H, Shibuya N. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci USA, 2014, 111:404-413.
[18] Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, Ochiai H, Tada Y, Shimamoto K, Yoshioka H, Kawasaki T. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microb, 2013, 13:347-357.
doi: 10.1016/j.chom.2013.02.007
[19] Yamada K, Yamaguchi K, Yoshimura S, Terauchi A, Kawasaki T. Conservation of chitin-induced MAPK signaling pathways in rice and Arabidopsis. Plant Cell Physiol, 2017, 58:993-1002.
doi: 10.1093/pcp/pcx042 pmid: 28371870
[20] Wang C, Wang G, Zhang C, Zhu P K, Dai H L, Yu N, He Z H, Xu L, Wang E T. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Mol Plant, 2017, 10:619-633.
doi: 10.1016/j.molp.2017.01.006
[21] Pennisi E. Armed and dangerous. Science, 2010, 327:804-805.
doi: 10.1126/science.327.5967.804
[22] Mine A, Seyerth C, Kracher B, Berens M L, Becker D, Tsuda K. The defense phytohormone signaling network enables rapid, high-amplitude transcriptional reprogramming during eector- triggered immunity. Plant Cell, 2018, 30:1199-1219.
doi: 10.1105/tpc.17.00970
[23] Meng J J, Wang L S, Wang J Y, Zhao X W, Cheng J K, Yu W X, Jin D, Li Q, Gong Z Z. Methionine adenosyltransferase4 mediates DNA and histone methylation. Plant Physiol, 2018, 177:652-670.
doi: 10.1104/pp.18.00183
[24] Yan, X J, Ma L, Pang H Y, Wang P, Lei L, Cheng Y X, Cheng J K, Guo Y, Li Q Z. Methionine synthase1 is involved in chromatin silencing by maintaining dna and histone methylation. Plant Physiol, 2019, 181:249-261.
doi: 10.1104/pp.19.00528
[25] Chen Y, Xu Y Y, Luo W, Li W X, Chen N, Zhang D J, Chong K. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiol, 2013, 163:1673-1685.
doi: 10.1104/pp.113.224527
[26] Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompe J, Wittwer C T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 2009, 55:611-622.
doi: 10.1373/clinchem.2008.112797
[27] Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y S, Wang R S, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24:4748-4762.
doi: 10.1105/tpc.112.105429
[28] Yang D W, Cheng C P, Zheng X H, Ye X F, Ye N, Huang F H. Identification and fine mapping of a major QTL, qHD19, that plays pleiotropic roles in regulating the heading date in rice. Mol Breed, 2020, 40:30.
doi: 10.1007/s11032-020-1109-x
[29] Schwessinger B, Ronald P C. Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol, 2012, 63:451-482.
doi: 10.1146/annurev-arplant-042811-105518 pmid: 22404464
[30] Yang C, Li W, Cao J D, Meng F W, Yu Y Q, Huang J K, Jiang L, Liu M X, Zhang Z G, Chen X W, Miyamoto K, Yamane H, Zhang J S, Chen S Y, Liu J. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J, 2017, 89:338-353.
doi: 10.1111/tpj.13388
[31] Mao D, Feng Y, Jian L, Poel B V, Tan D, Li J L, Liu Y Q, Li X S, Dong M Q, Chen L B, Li D P, Luan S. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ, 2016, 38:2566-2574.
doi: 10.1111/pce.12570
[32] Ji D C, Cui X M, Qin G Z, Chen T, Tian S P. SlFERL interacts with S-adenosylmethionine synthetase to regulate fruit ripening. Plant Physiol, 2020, 184:2168-2181.
doi: 10.1104/pp.20.01203
[33] Li W X, Han Y Y, Tao F, Chong K. Knockdown of SAMS genes encoding S-adenosyl-L-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J Plant Physiol, 2011, 168:1837-1843.
doi: 10.1016/j.jplph.2011.05.020
[34] Iwai T, Miyasaka A, Seo S, Ohashi Y. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol, 2006, 142:1202-1215.
doi: 10.1104/pp.106.085258
[35] Tintor N, Ross A, Kanehara K, Yamada K, Fan L, Kemmerling B, Nürnberger T, Tsuda K, Saijo Y. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc Natl Acad Sci USA, 2013, 110:6211-6216.
doi: 10.1073/pnas.1216780110
[36] Helliwell E E, Wang Q, Yang Y N. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J, 2013, 11:33-42.
doi: 10.1111/pbi.12004 pmid: 23031077
[37] Singh M P, Lee F N, Counce P A, Gibbons J H. Mediation of partial resistance to rice blast through anaerobic induction of ethylene. Phytopathology, 2004, 94:819-825.
doi: 10.1094/PHYTO.2004.94.8.819
[38] Seo Y S, Chern M, Bartley L E, Han M, Jung K H, Lee I, Walia H, Richter T, Xu X, Cao P, Bai W, Ramanan R, Amonpant F, Arul L, Canlas P E, Ruan R, Park C J, Chen X, Hwang S, Jeon J S, Ronald P C. Towards establishment of a rice stress response interactome. PLoS Genet, 2011, 7:e1002020.
[39] Gong B, Li X VandenLangenberg K M, Wen D, Sun S S, Wei M, Li Y, Yang F J, Shi Q H, Wang X F. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J, 2014, 12:694-708.
doi: 10.1111/pbi.2014.12.issue-6
[40] Mao D D, Yu F, Li J, Van de Poel B, Tan D, Li J L, Liu Y Q, Li X S, Dong M Q, Chen L B, Li D P, Luan S. FERONIA receptor kinase interacts with S-denosylmethionine synthetase and suppresses S-denosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ, 2015, 38:2566-2574.
doi: 10.1111/pce.12570
[41] Chen Y, Zou T, McCormick S. S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiol, 2016, 172:244-253.
doi: 10.1104/pp.16.00774
[42] Shen B, Li C, Tarczynski M C. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J, 2002, 29:371-380.
pmid: 11844113
[43] Li W X, Han Y Y, Tao F, Chong K. Knockdown of SAMS genes encoding S-adenosyl-l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J Plant Physiol, 2011, 168:1837-1843.
doi: 10.1016/j.jplph.2011.05.020
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!