作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1119-1128.doi: 10.3724/SP.J.1006.2022.12022
杨德卫1,2(), 王勋1(), 郑星星1, 项信权1, 崔海涛1, 李生平1,*(), 唐定中1,*()
YANG De-Wei1,2(), WANG Xun1(), ZHENG Xing-Xing1, XIANG Xin-Quan1, CUI Hai-Tao1, LI Sheng-Ping1,*(), TANG Ding-Zhong1,*()
摘要:
稻瘟病是水稻最重要的病害之一, 对农业生产造成巨大的经济损失。研究表明, 水稻中S-腺苷-L-甲硫氨酸合成酶OsSAMS1参与了水稻衰老相关的进程, 我们实验室前期利用转录组测序分析发现, OsSAMS1基因的表达水平受稻瘟病菌诱导后明显提高。然而, OsSAMS1是否参与水稻的免疫反应, 尚未明确。基于此, 本研究选取野生型ZH11为背景材料, 通过构建OsSAMS1基因敲除突变体来探究该基因在水稻抗病中的功能。结果表明, OsSAMS1主要在水稻叶片中表达; 且其表达明显受稻瘟病菌侵染所诱导。亚细胞定位结果显示, OsSAMS1在细胞膜、细胞质和细胞核内均有表达。通过接种稻瘟病菌发现, 与对照相比, 2个等位敲除突变体ossams1-1和ossams1-2均表现为更加感病, 且体内病程相关基因的表达也明显更低, 同时突变体中乙烯合成相关基因的表达也受到明显抑制。综上所述, OsSAMS1参与了水稻的免疫反应, 且正调控水稻稻瘟病的抗性。本研究为深入揭示OsSAMS1在稻瘟病免疫反应的分子机理奠定了基础, 并为稻瘟病抗病育种研究提供了基因资源。
[1] | Zhang N, Luo J, Rossman A Y, Aoki T, Chuma I, Crous P W, Dean R, de Vries R P, Donofrio N, Hyde K D, Lebrun M H, Talbot N J, Tharreau D, Tosa Y, Valent B, Wang Z H, Xu J R. Generic names in Magnaporthales. IMA Fung, 2016, 7:155-159. |
[2] |
Li W T, Chern M S, Yin J J, Wang J, Chen X W. Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol, 2019, 50:114-120.
doi: 10.1016/j.pbi.2019.03.015 |
[3] |
Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Tharreau D, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355:962-965.
doi: 10.1126/science.aai8898 |
[4] |
Yang D W, Li S P, Lu L, Fang J B, Wang W, Cui H T, Tang D Z. Identification and application of the Pigm-1 gene in rice disease-resistance breeding. Plant Biol, 2020, 22:1022-1029.
doi: 10.1111/plb.v22.6 |
[5] |
Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19:1216-1228.
doi: 10.1094/MPMI-19-1216 |
[6] |
Zhu X Y, Chen S, Yang J Y, Zhou S C, Zeng L X, Han J L, Su J, Wang, Pan Q H. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet, 2012, 124:1295-1304.
doi: 10.1007/s00122-012-1787-9 |
[7] |
Jiang N, Li Z Q, Wu J, Wang Y, Wu L Q, Wang S H, Wang D, Wen T, Liang Y, Sun P Y, Liu J L, Dai L Y, Wang Z L, Wang C, Luo M Z, Liu X L, Wang G L. Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson. Rice, 2012, 5:29.
doi: 10.1186/1939-8433-5-29 pmid: 27234247 |
[8] |
Su J, Wang W J, Han J L, Chen S, Wang C Y, Zeng L X, Feng A Q, Yang J Y, Zhou B, Zhu X Y. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet, 2015, 128:2213-2225.
doi: 10.1007/s00122-015-2579-9 |
[9] |
Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Tharreau D, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355:962-965.
doi: 10.1126/science.aai8898 |
[10] | Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet, 2010, 11:539-548. |
[11] |
Wang W, Feng B M, Zhou J M, Tang D Z. Plant immune signaling: advancing on two frontiers. J Integr Plant Biol, 2020, 62:2-24.
doi: 10.1111/jipb.v62.1 |
[12] | 杨德卫, 李生平, 崔海涛, 邹声浩, 王伟. 寄主植物与病原菌免疫反应的分子遗传基础. 遗传, 2020, 42:278-286. |
Yang D W, Li S P, Cui H T, Zou S H, Wang W. Molecular genetic mechanisms of interaction between host plants and pathogens. Hereditas(Beijing), 2020, 42:278-286 (in Chinese with English abstract). | |
[13] |
Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444:323-329.
doi: 10.1038/nature05286 |
[14] | Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou J M, He S Y, Xin X F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592:105-109. |
[15] | Ngou B P M, Ahn H K, Ding P T, Jones J D G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592:110-115. |
[16] |
Li W T, Chern M S, Yin J J, Wang J, Chen X W. Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol, 2019, 50:114-120
doi: 10.1016/j.pbi.2019.03.015 |
[17] | Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, Molinaro A, Kaku H, Shibuya N. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci USA, 2014, 111:404-413. |
[18] |
Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, Ochiai H, Tada Y, Shimamoto K, Yoshioka H, Kawasaki T. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microb, 2013, 13:347-357.
doi: 10.1016/j.chom.2013.02.007 |
[19] |
Yamada K, Yamaguchi K, Yoshimura S, Terauchi A, Kawasaki T. Conservation of chitin-induced MAPK signaling pathways in rice and Arabidopsis. Plant Cell Physiol, 2017, 58:993-1002.
doi: 10.1093/pcp/pcx042 pmid: 28371870 |
[20] |
Wang C, Wang G, Zhang C, Zhu P K, Dai H L, Yu N, He Z H, Xu L, Wang E T. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Mol Plant, 2017, 10:619-633.
doi: 10.1016/j.molp.2017.01.006 |
[21] |
Pennisi E. Armed and dangerous. Science, 2010, 327:804-805.
doi: 10.1126/science.327.5967.804 |
[22] |
Mine A, Seyerth C, Kracher B, Berens M L, Becker D, Tsuda K. The defense phytohormone signaling network enables rapid, high-amplitude transcriptional reprogramming during eector- triggered immunity. Plant Cell, 2018, 30:1199-1219.
doi: 10.1105/tpc.17.00970 |
[23] |
Meng J J, Wang L S, Wang J Y, Zhao X W, Cheng J K, Yu W X, Jin D, Li Q, Gong Z Z. Methionine adenosyltransferase4 mediates DNA and histone methylation. Plant Physiol, 2018, 177:652-670.
doi: 10.1104/pp.18.00183 |
[24] |
Yan, X J, Ma L, Pang H Y, Wang P, Lei L, Cheng Y X, Cheng J K, Guo Y, Li Q Z. Methionine synthase1 is involved in chromatin silencing by maintaining dna and histone methylation. Plant Physiol, 2019, 181:249-261.
doi: 10.1104/pp.19.00528 |
[25] |
Chen Y, Xu Y Y, Luo W, Li W X, Chen N, Zhang D J, Chong K. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiol, 2013, 163:1673-1685.
doi: 10.1104/pp.113.224527 |
[26] |
Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompe J, Wittwer C T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 2009, 55:611-622.
doi: 10.1373/clinchem.2008.112797 |
[27] |
Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y S, Wang R S, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24:4748-4762.
doi: 10.1105/tpc.112.105429 |
[28] |
Yang D W, Cheng C P, Zheng X H, Ye X F, Ye N, Huang F H. Identification and fine mapping of a major QTL, qHD19, that plays pleiotropic roles in regulating the heading date in rice. Mol Breed, 2020, 40:30.
doi: 10.1007/s11032-020-1109-x |
[29] |
Schwessinger B, Ronald P C. Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol, 2012, 63:451-482.
doi: 10.1146/annurev-arplant-042811-105518 pmid: 22404464 |
[30] |
Yang C, Li W, Cao J D, Meng F W, Yu Y Q, Huang J K, Jiang L, Liu M X, Zhang Z G, Chen X W, Miyamoto K, Yamane H, Zhang J S, Chen S Y, Liu J. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J, 2017, 89:338-353.
doi: 10.1111/tpj.13388 |
[31] |
Mao D, Feng Y, Jian L, Poel B V, Tan D, Li J L, Liu Y Q, Li X S, Dong M Q, Chen L B, Li D P, Luan S. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ, 2016, 38:2566-2574.
doi: 10.1111/pce.12570 |
[32] |
Ji D C, Cui X M, Qin G Z, Chen T, Tian S P. SlFERL interacts with S-adenosylmethionine synthetase to regulate fruit ripening. Plant Physiol, 2020, 184:2168-2181.
doi: 10.1104/pp.20.01203 |
[33] |
Li W X, Han Y Y, Tao F, Chong K. Knockdown of SAMS genes encoding S-adenosyl-L-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J Plant Physiol, 2011, 168:1837-1843.
doi: 10.1016/j.jplph.2011.05.020 |
[34] |
Iwai T, Miyasaka A, Seo S, Ohashi Y. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol, 2006, 142:1202-1215.
doi: 10.1104/pp.106.085258 |
[35] |
Tintor N, Ross A, Kanehara K, Yamada K, Fan L, Kemmerling B, Nürnberger T, Tsuda K, Saijo Y. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc Natl Acad Sci USA, 2013, 110:6211-6216.
doi: 10.1073/pnas.1216780110 |
[36] |
Helliwell E E, Wang Q, Yang Y N. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J, 2013, 11:33-42.
doi: 10.1111/pbi.12004 pmid: 23031077 |
[37] |
Singh M P, Lee F N, Counce P A, Gibbons J H. Mediation of partial resistance to rice blast through anaerobic induction of ethylene. Phytopathology, 2004, 94:819-825.
doi: 10.1094/PHYTO.2004.94.8.819 |
[38] | Seo Y S, Chern M, Bartley L E, Han M, Jung K H, Lee I, Walia H, Richter T, Xu X, Cao P, Bai W, Ramanan R, Amonpant F, Arul L, Canlas P E, Ruan R, Park C J, Chen X, Hwang S, Jeon J S, Ronald P C. Towards establishment of a rice stress response interactome. PLoS Genet, 2011, 7:e1002020. |
[39] |
Gong B, Li X VandenLangenberg K M, Wen D, Sun S S, Wei M, Li Y, Yang F J, Shi Q H, Wang X F. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J, 2014, 12:694-708.
doi: 10.1111/pbi.2014.12.issue-6 |
[40] |
Mao D D, Yu F, Li J, Van de Poel B, Tan D, Li J L, Liu Y Q, Li X S, Dong M Q, Chen L B, Li D P, Luan S. FERONIA receptor kinase interacts with S-denosylmethionine synthetase and suppresses S-denosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ, 2015, 38:2566-2574.
doi: 10.1111/pce.12570 |
[41] |
Chen Y, Zou T, McCormick S. S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiol, 2016, 172:244-253.
doi: 10.1104/pp.16.00774 |
[42] |
Shen B, Li C, Tarczynski M C. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J, 2002, 29:371-380.
pmid: 11844113 |
[43] |
Li W X, Han Y Y, Tao F, Chong K. Knockdown of SAMS genes encoding S-adenosyl-l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J Plant Physiol, 2011, 168:1837-1843.
doi: 10.1016/j.jplph.2011.05.020 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|