欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1111-1121.doi: 10.3724/SP.J.1006.2023.22001

• 耕作栽培·生理生化 • 上一篇    下一篇

多样性混合间栽对水稻根际细菌群落结构与功能的影响

唐文强1,**(), 张文龙1,**, 朱晓乔1, 董必正1, 李勇成2, 杨楠1, 张耀2, 王云月1,*(), 韩光煜1,*()   

  1. 1云南农业大学农业生物多样性与病虫害控制教育部重点实验室/云南生物资源保护与利用国家重点实验室, 云南昆明 650201
    2红河州农业科学院, 云南蒙自 661100
  • 收稿日期:2022-01-02 接受日期:2022-09-05 出版日期:2023-04-12 网络出版日期:2022-09-22
  • 通讯作者: *韩光煜, E-mail: hanguangyu9745@163.com;王云月, E-mail: 1371209436@qq.com
  • 作者简介:唐文强, E-mail: 1092297272@qq.com
    **同等贡献
  • 基金资助:
    云南省基础研究计划项目(202201AT070265);国家自然科学基金项目(31800451);云南省“高层次人才培养支持计划”青年拔尖人才专项(YNWRQNBJ2020296)

Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere

TANG Wen-Qiang1,**(), ZHANG Wen-Long1,**, ZHU Xiao-Qiao1, DONG Bi-Zheng1, LI Yong-Cheng2, YANG Nan1, ZHANG Yao2, WANG Yun-Yue1,*(), HAN Guang-Yu1,*()   

  1. 1Key Laboratory of the Ministry of Education for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University/State Key Laboratory for Bio-resource Protection and Utilization in Yunnan, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2Honghe Academy of Agricultural Sciences, Mengzi 661100, Yunnan, China
  • Received:2022-01-02 Accepted:2022-09-05 Published:2023-04-12 Published online:2022-09-22
  • Contact: *E-mail: hanguangyu9745@163.com;E-mail: 1371209436@qq.com
  • About author:**Contributed equally to this work
  • Supported by:
    Yunnan Fundamental Research Projects(202201AT070265);National Natural Science Foundation of China(31800451);“High-level Talent Training Support Program” Specialized Project for Young Top Talents in Yunnan(YNWRQNBJ2020296)

摘要:

为了明确水稻多样性混合间栽对稻瘟病防治及根际细菌群落结构和功能的影响, 利用Illumina Hiseq测序技术, 对筛选的高防治效果(E=54.48%)组合(汕优63||黄壳糯)和低防治效果(E=14.12%)组合(合系39||黄壳糯)分别在间栽和净栽下进行水稻根际土壤细菌16S rRNA测序分析。结果表明, 多样性间栽系统中水稻根际共检测到土壤细菌37门116纲244目384科689属, 绿弯菌门(Chloroflexi)、变形菌门(Proteobacteria)和放线菌门(Actinobacteriota)为主要细菌优势类群, 相对丰度均在15%以上。Alpha多样性分析显示, 高防效组合在间栽条件下可显著提高水稻根际细菌群落香农指数和Chao1指数(P<0.05), 而低防效组合无差异(P>0.05)。ANOSIM及PCoA分析发现, 净栽条件下各品种根际细菌群落结构差异显著(r = 0.48, P<0.01), 间栽后高防效组合和低防效组合根际细菌群落结构无显著差异(P>0.05), 即间栽增加了组配品种间细菌群落结构的相似性。细菌优势类群组成结果表明, 与净栽相比高防效组合中汕优63根际中酸杆菌门(Acidobacteriota)相对丰度显著降低, 放线菌门(Actinobacteriota)和厚壁菌门(Firmicutes)显著上升, 黄壳糯各优势菌门无显著差异; 低防效组合中合系39根际中Patescilbacteria显著下降, 黄壳糯芽单胞菌门(Gemmatimonadota)显著上升。PICRUSt2功能预测表明, 间栽系统中主栽品种次生代谢产物的合成相对丰度显著下降, 间栽品种转录、辅酶和维生素的代谢相对丰度显著上升。综上, 高防效组合通过混合间栽, 能改善水稻根际菌群多样性、细菌群落结构及功能, 从而有效降低稻瘟病病害发生, 为利用改良土壤微生物提高植物抗病性提供应用途径和多样性间栽防治病害理论提供数据支撑。

关键词: 水稻, 多样性混合间栽, 高通量测序, 细菌群落, 细菌多样性, 功能预测

Abstract:

In order to clarify the effects of mixture intercropping on the control of rice blast and the structure and function of the rhizosphere bacterial community, the 16S rRNA sequencing analysis of bacteria in rhizosphere soil of the selected high control efficiency (E=54.48%) (Shanyou 63/Huangkenuo) and low control efficiency (E=14.12%) combinations (Hexi 39/Huangkenuo) under the intercropping and monoculture treatments were performed with Illumina Hiseq sequencing technology. The results showed that soil bacteria, from 37 phyla, 116 classes, 244 orders, 384 families, 689 genera, were obtained in the intercropping system. Chloroflexi, Proteobacteria, and Actinobacteriota were the dominant bacterial groups. The relative abundance was higher than 15%. Alpha diversity analysis discovered that high-efficacy combination significantly increased the Shannon index and Chao1 index of rice rhizosphere bacterial community in intercropping conditions (P<0.05), whereas there was no difference at P>0.05 in low-efficiency combination. ANOSIM and PCoA analyses revealed that there was significant difference in the structure of the species in the rhizosphere bacterial community in monoculture (r = 0.48, P<0.01), but no significant difference in the rhizosphere bacterial community structure between the high- and low-efficiency combinations following intercropping (P>0.05), which indicating that intercropping increased the similarity of bacterial community structure between both combinations. Comparison to monoculture, the dominant bacterial group composition proved that the relative abundance of Shanyou63 Acidobacteriota decreased significantly, while the relative abundance of Shanyou 63 Actinobacteriota and Firmicutes increased significantly, but there was no significant difference among the dominant bacteria in Huangkenuo. Hexi 39 rhizosphere Patescilbacteria exhibited the significant decrease in low-efficiency combinations, whereas Gemmatimonadota showed the significant increase. PICRUSt2 function prediction discovered that the relative abundance of biosynthesis of other secondary metabolites in the main cultivars decreased significantly in the intercropping system, while the relative abundance of transcription, metabolism of cofactors and vitamins in intercropping cultivars increased significantly. In conclusion, to increase plant disease resistance and to provide data support for the theory of diverse intercropping for disease control, the high-efficacy combination had the ability to improve the diversity of rice rhizosphere bacteria and the structure and function of bacterial community by mixture intercropping, which effectively reduced the occurrence of rice blast and provided an application pathway for the improvement of soil microorganisms.

Key words: rice (Oryza sativa), mixture intercropping, high-throughput sequencing, bacterial community, bacterial diversity, functional prediction

图1

水稻种植模式及取样点示意图 a: 水稻混合间栽示意图; b: 水稻净栽示意图; c: 水稻种植小区示意图。空心圆为主栽品种, 实心圆为间栽品种, 方框为根际土壤取样点; SY63: 汕优63; HX39: 合系39; HKN: 黄壳糯。"

图2

不同间栽组合稻瘟病病情指数 a: 叶瘟病情指数; b: 穗颈瘟病情指数。Mono: 净栽处理; Mix1: 黄壳糯||汕优63; Mix2: 黄壳糯||合系39; “_”后为品种名称; 缩写同图1。*: P < 0.05; ns: 差异不显著。"

表1

各样品优化序列及Alpha多样性指数"

样品
Sample name
优化序列数
Number of optimized sequences
香农指数
Shannon index
Chao1指数
Chao1 index
覆盖率
Coverage (%)
Mono_SY63 50,410.75±2228.10 6.85±0.05 b 5209.20±57.35 b 0.98±0.00
Mix1_SY63 49,091.00±2289.82 6.79±0.04 ab 5180.00±172.30 ab 0.97±0.00
Mono_HKN 44,599.00±1617.19 6.75±0.11 a 4879.60±242.87 a 0.97±0.00
Mix1_HKN 55,623.25±3698.34 6.90±0.05 b 5465.00±216.12 b 0.98±0.00
Mono_HX39 49,397.00±1588.52 6.85±0.07 ab 5140.80±194.01 ab 0.97±0.00
Mix2_HX39 50,410.75±2228.10 6.94±0.08 ab 5455.20±235.42 ab 0.97±0.00
Mix2_HKN 47,421.25±1516.07 6.75±0.18 ab 5004.60±274.35 ab 0.97±0.00

图3

根际细菌群落结构PCoA及ANOSIM分析 a: 3个品种水稻净栽处理; b: 汕优63与黄壳糯净栽处理; c: 汕优63与黄壳糯间栽处理; d: 合系39与黄壳糯净栽处理; e: 合系39与黄壳糯间栽处理; 缩写同图1。"

图4

优势菌门及其差异 a: 3个品种水稻净栽处理; b: 汕优63间栽处理; c: 与汕优63间栽的黄壳糯; d: 合系39间栽处理; e: 与合系39间栽的黄壳糯; 缩写同图1。*: P < 0.05。"

图5

优势菌目及其变化 a: 3个品种水稻净栽处理; b: 汕优63间栽处理; c: 与汕优63间栽的黄壳糯; d: 合系39间栽处理; e: 与合系39间栽的黄壳糯; 缩写同图1。*: P < 0.05。"

图6

KEEG预测功能基因在不同处理水稻根际细菌群落之间的差异 a: 汕优63; b: 与汕优63间栽的黄壳糯; c: 合系39; d: 与合系39间栽的黄壳糯; BOSM: 其他次生代谢产物的生物合成; EM : 能量代谢; MCV : 辅酶和维生素的代谢; LM : 脂质代谢; XBM : 生物降解和代谢; FSD : 折叠, 分类和降解; MTP : 萜类和多同类代谢; T : 转录; CAM : 碳水化合物代谢; CEM : 细胞活性; NM : 核苷酸代谢; *: P < 0.05。"

[1] Redoña E D. Rice Biotechnology for Developing Countries in Asia. Science City of Muñoz: NABC, 2004. pp 201-201.
[2] Talbot N J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 2003, 57: 177-202.
doi: 10.1146/annurev.micro.57.030502.090957
[3] Pennisi E. Armed and dangerous. Science, 2010, 327: 804-805.
doi: 10.1126/science.327.5967.804 pmid: 20150482
[4] Liu W D, Liu J L, Triplett L, Leach J E, Wang G L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol, 2014, 52: 213-241.
doi: 10.1146/annurev-phyto-102313-045926 pmid: 24906128
[5] Fernandez J, Orth K. Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol, 2018, 26: 582-597.
doi: S0966-842X(17)30280-9 pmid: 29395728
[6] Keesing F, Belden L K, Daszak P, Dobson A, Harvell C D, Holt R D, Hudson P, Jolles A, Jones K E, Mitchell C E, Myers S S, Bogich T, Ostfeld R S. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468: 647-652.
doi: 10.1038/nature09575
[7] Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406: 718-722.
doi: 10.1038/35021046
[8] Van Bruggen A H C, Finckh M R. Plant diseases and management approaches in organic farming systems. Annu Rev Phytopathol, 2016, 54: 25-54.
doi: 10.1146/annurev-phyto-080615-100123 pmid: 27215969
[9] 朱有勇. 遗传多样性与作物病害持续控制. 北京: 科学出版社, 2007. pp 364-385.
Zhu Y Y. Genetic Diversity for Corps Diseases’ Sustainable Management. Beijing: Science Press, 2007. pp 364-385. (in Chinese)
[10] 骆世明. 农业生物多样性利用的原理与技术. 北京: 化学工业出版社, 2010. pp 1-251.
Luo S M. Principles and Techniques of Agrobiodiversity Utilization. Beijing: Chemical Industry Press, 2010. pp 1-251 (in Chinese).
[11] Qin J H, He H Z, Luo S M, Li H S. Effects of rice-water chestnut intercropping on rice sheath blight and rice blast diseases. Crop Prot, 2013, 43: 89-93.
doi: 10.1016/j.cropro.2012.09.009
[12] Trivedi P, Leach J E, Tringe S G, Sa T, Singh B K. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol, 2020, 18: 607-621.
doi: 10.1038/s41579-020-0412-1
[13] Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol, 2011, 156: 989-996.
doi: 10.1104/pp.111.175448 pmid: 21606316
[14] Rodriguez P A, Rothballer M, Chowdhury S P, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plant-microbiome interactions. Mol Plant, 2019, 12: 804-821.
doi: S1674-2052(19)30171-6 pmid: 31128275
[15] Jin X, Shi Y J, Wu F Z, Pan K, Zhou X G. Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusarium wilt disease. Sci Agric, 2020, 77: e20190005.
doi: 10.1590/1678-992x-2019-0005
[16] Shi Y J, Wang J, Jin X, Wang Z L, Pan D D, Zhuang Y, Wu F Z, Zhou X G. Effects of intercropping of wheat on composition of cucumber seedling rhizosphere fungal community. Allelopathy J, 2019, 46: 97-106.
[17] Wu H M, Lin M H, Rensing C, Qin X J, Zhang S K, Chen J, Wu L K, Zhao Y L, Lin S, Lin W X. Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae. Plant Soil, 2020, 454: 411-430.
doi: 10.1007/s11104-020-04659-1
[18] Li Y Y, Feng J, Zheng L, Huang J B, Yang Y, Li X H. Intercropping with marigold promotes soil health and microbial structure to assist in mitigating tobacco bacterial wilt. J Plant Pathol, 2020, 102: 731-742.
doi: 10.1007/s42161-020-00490-w
[19] Zhang J Y, Liu Y X, Zhang N, Hu B, Jin T, Xu H R, Qin Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C, Wang H, Qu B Y, Fan G Y, Yuan L X, Garrido-Oter R, Chu C C, Bai Y. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol, 2019, 37: 676-684.
doi: 10.1038/s41587-019-0104-4
[20] Xu N, Tan G C, Wang H Y, Gai X P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol, 2016, 74: 1-8.
doi: 10.1016/j.ejsobi.2016.02.004
[21] Chen S F, Zhou Y Q, Chen Y R, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890.
doi: 10.1093/bioinformatics/bty560
[22] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013, 10: 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772
[23] 胡汉升, 宁万光, 徐畅, 余开会, 史洪中, 刘红敏. 水稻杂糯间作栽培防治稻瘟病的效果. 江苏农业科学, 2015, 43(4): 127-128.
Hu H S, Ning W G, Xu C, Yu K H, Shi H Z, Liu H M. Effectiveness of intercropping hybrids rice with glutinous rice for the control of rice blast. Jiangsu Agric Sci, 2015, 43(4): 127-128. (in Chinese)
[24] Han G Y, Lang J, Sun Y, Wang Y Y, Zhu Y Y, Lu B R. Intercropping of rice varieties increases the efficiency of blast control through reduced disease occurrence and variability. J Integr Agric, 2016, 15: 795-802.
doi: 10.1016/S2095-3119(15)61055-3
[25] Li Z F, Wang T, He C L, Cheng K L, Zeng R S, Song Y Y. Control of Panama disease of banana by intercropping with Chinese chive (Allium tuberosum Rottler): cultivar differences. BMC Plant Biol, 2020, 20: 432.
doi: 10.1186/s12870-020-02640-9
[26] 蔡祖聪, 黄新琦. 土壤学不应忽视对作物土传病原微生物的研究. 土壤学报, 2016, 53: 305-310.
Cai Z C, Huang X Q. Soil-borne pathogens should not be ignored by soil science. Acta Petrol Sin, 2016, 53: 305-310. (in Chinese with English abstract)
[27] 杨俊, 王星, 付丽娜, 汪娅婷, 刘棋, 苗新利, 王凡, 魏兰芳, 姬广海. 水稻条斑病抗感品种根际微生物群落结构和功能分析. 生态科学, 2019, 38(1): 17-25.
Yang J, Wang X, Fu L N, Wang Y T, Liu Q, Miao X, Wang F, Wei L F, Ji G H. Study on rhizosphere microbial community and functional diversity of different resistant rice varieties to rice leaf streak disease. Ecol Sci, 2019, 38(1): 17-25. (in Chinese with English abstract)
[28] 胡蓉, 郑露, 刘浩, 黄俊斌. 秸秆还田对水稻根际微生物多样性和水稻纹枯病发生的影响. 植物保护学报, 2020, 47: 1261-1269.
Hu R, Zheng L, Liu H, Huang J B. Effects of straw returning on microbial diversity in rice rhizosphere and occurrence of rice sheath blight. J Plant Prot, 2020, 47: 1261-1269. (in Chinese with English abstract)
[29] 杨阳, 姚槐应. 间作下根际微生物控制土传病害的研究进展. 武汉工程大学学报, 2021, 43: 381-390.
Yang Y, Yao H Y. Progress in control of soil-borne diseases by rhizosphere microorganisms under intercropping. J Wuhan Inst Technol, 2021, 43: 381-390. (in Chinese with English abstract)
[30] Zhou L J, Wang Y J, Xie Z K, Zhang Y B, Malhi S S, Guo Z H, Qiu Y, Wang L. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor. J Basic Microbiol, 2018, 58: 892-901.
doi: 10.1002/jobm.201800163
[31] 郝海平, 白红彤, 夏菲, 郝渊鹏, 李慧, 崔洪霞, 谢晓明, 石雷. 茶-山苍子间作对茶园土壤微生物群落结构的影响. 中国农业科学, 2021, 54: 3959-3969.
Hao H P, Bai H T, Xia F, Hao Y P, Li H, Cui H X, Xie X M, Shi L. Effects of tea-Litsea cubeba intercropping on soil microbial community structure in tea plantation. Sci Agric Sin, 2021, 54: 3959-3969. (in Chinese with English abstract)
[32] 张静, 可文静, 刘娟, 王留行, 陈浩, 彭廷, 赵全志. 不同深度土壤控水对稻田土壤微生物区系及细菌群落多样性的影响. 中国生态农业学报, 2019, 27: 277-285.
Zhang J, Ke W J, Liu J, Wang L X, Chen H, Peng T, Zhao Q Z. Influence of water controlling depth on soil microflora and bacteria community diversity in paddy soil. Chin J Eco-Agric, 2019, 27: 277-285. (in Chinese with English abstract)
[33] 艾超, 孙静文, 王秀斌, 梁国庆, 何萍, 周卫. 植物根际沉积与土壤微生物关系研究进展. 植物营养与肥料学报, 2015, 21: 1343-1351.
Ai C, Sun J W, Wang X B, Liang G Q, He P, Zhou W. Advances in the study of the relationship between plant rhizodeposition and soil microorganism. Plant Nutr Fert Sci, 2015, 21: 1343-1351. (in Chinese with English abstract)
[34] Pankratov T A, Ivanova A O, Dedysh S N, Liesack W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol, 2011, 13: 1800-1814.
doi: 10.1111/j.1462-2920.2011.02491.x pmid: 21564458
[35] Lu S, Gischkat S, Reiche M, Akob D M, Hallberg K B, Küsel K. Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol, 2010, 76: 8174-8183.
doi: 10.1128/AEM.01931-10
[36] Coates J D, Ellis D J, Gaw C V, Lovley D R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Evol Microbiol, 1999, 49: 1615-1622.
doi: 10.1099/00207713-49-4-1615
[37] Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, Plengvidhya V, Champreda V, Eurwilaichitr L. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb Ecol, 2011, 61: 518-528.
doi: 10.1007/s00248-010-9766-7 pmid: 21057783
[38] Gu Y, Ding Y, Ren C, Sun Z, Rodionov D A, Zhang W W, Yang S, Yang C, Jiang W H. Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics, 2010, 11: 255.
doi: 10.1186/1471-2164-11-255 pmid: 20406496
[39] 徐佳迎, 周金蓉, 吴杰, 王珏, 程粟裕, 赵鸽, 蒋静艳. 磺胺二甲嘧啶对稻田土壤微生物的中长期效应. 农业环境科学学报, 2020, 39: 1757-1766.
Xu J Y, Zhou J R, Wu J, Wang J, Cheng S Y, Zhao G, Jiang J Y. Medium- and long-term effects of the veterinary antibiotic sulfadiazine on soil microorganisms in a rice field. J Agro-Environ Sci, 2020, 39: 1757-1766. (in Chinese with English abstract)
[40] 王珂, 杨玉爱, 袁可能. 维生素(B6, C, PP)对小麦生理特性及生长的影响. 科技通报, 1995, 11: 301-305.
Wang K, Yang Y A, Yuan K N. Effects of three vitamins on the growth and physiological properties in wheat. Bull Sci Technol, 1995, 11: 301-305. (in Chinese with English abstract)
[1] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[2] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[3] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[4] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[5] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[6] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[7] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[8] 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342.
[9] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[10] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[11] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[12] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[13] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[14] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[15] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!