Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (02): 191-201.doi: 10.3724/SP.J.1006.2011.00191
• REVIEW • Next Articles
WANG Jian-Kang,LI Hui-Hui,ZHANG Xue-Cai,YIN Chang-Bin,LI Yu,MA You-Zhi,LI Xin-Hai,QIU Li-Juan,WAN Jian-Min*
[1]Allard R W. Principles of Plant Breeding, 2nd edn. New York: John Wiley & Sons, 1999 [2]Bernardo R. Breeding for Quantitative Traits in Plants. Woodbury, Minnesota: Stemma Press, 2002 [3]Cooper M, Hammer G L. Plant Adaptation and Crop Improvement. Wallingford, UK: CAB International, 1996 [4]Zhai H-Q(翟虎渠), Wang J-K(王建康). Applied Quantitative Genetics (应用数量遗传). Beijing: China Agricultural Science and Technology Press, 2007 (in Chinese) [5]Wang J, Ginkel M, Podlich D, Ye G, Trethowan R, Pfeiffer W, DeLacy I H, Cooper M, Rajaram S. Comparison of two breeding strategies by computer simulation. Crop Sci, 2003, 43: 1764-1773 [6]Peleman J D, Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330-334 [7]Wan J-M(万建民). Perspectives of molecular design breeding in crops. Acta Agron Sin (作物学报), 2006, 32(3): 455-462 (in Chinese with English abstract) [8]Wang J, Wan X, Li H, Pfeiffer W, Crouch J, Wan J. Application of identified QTL-marker associations in rice quality improvement through a design breeding approach. Theor Appl Genet, 2007, 115: 87-100 [9]Wan J-M(万建民). Molecular design breeding in Super Rice. J Shenyang Agric Univ (沈阳农业大学学报), 2007, 38(5): 652-661 (in Chinese with English abstract) [10]Zhou D-G(周德贵), Zhao Q-Y(赵琼一), Fu C-Y(付崇允), Li H(李宏), Cai X-F(蔡学飞), Luo D(罗达), Zhou S-C(周少川). The next generation sequencing and its effect on the rice molecular design breeding. Mol Plant Breed(分子植物育种), 2008, 6(4): 619-630 (in Chinese with English abstract) [11]Li Y(黎裕), Wang J-K(王建康), Qiu L-J(邱丽娟), Ma Y-Z(马有志), Li X-H(李新海), Wan J-M(万建民). Crop molecular breeding in China: current status and perspectives. Acta Agron Sin (作物学报), 2010, 36(9): 1425-1430 (in Chinese with English abstract) [12]Mackay T F C, Stone E A, Ayroles J F. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet, 2009, 10: 565-577 [13]Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93-104 [14]Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374 [15]Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260 [16]Zhang L, Li H, Li Z, Wang J. Interactions between markers can be caused by the dominance effect of QTL. Genetics, 2008, 180: 1177-1190 [17]Phillips P C. Epistasis: the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet, 2008, 9: 855-867 [18]Wang J-K(王建康). Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin (作物学报), 2009, 35(2): 239-245 (in Chinese with English abstract) [19]Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breed Sci, 2002, 52: 319-325 [20]Cowley A W Jr, Roman R J, Jacob H J. Application of chromosome substitution techniques in gene-function discovery. J Physiol, 2003, 554: 46-55 [21]Wan X Y, Wan J M, Su C C, Wang C M, Shen W B, Li J M, Wang H L, Jiang L, Liu S J, Chen L M, Yasui H, Yoshimura A. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet, 2004, 110: 71-79 [22]Zeng R-Z(曾瑞珍), Shi J-Q(施军琼), Huang C-F(黄朝锋), Zhang Z-M(张泽民), Ding X-H(丁效华), Li W-T(李文涛), Zhang G-Q(张桂权). Development of a series of single segment substitution lines in indica background of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(1): 88-95 (in Chinese with English abstract) [23]Xu H-S(徐华山), Sun Y-J(孙永建), Zhou H-J(周红菊), Yu S-B(余四斌). Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agron Sin (作物学报), 2007, 33(6): 979-986 (in Chinese with English abstract) [24]Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature, 2003, 422: 618-621 [25]Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110: 1334-1346 [26]Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C H, Wang J L, Zhang X, Cheng Z J, Guo X P. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112: 1258-1270 [27]Zhao F-M(赵芳明), Zhang G-Q(张桂权), Zeng R-Z(曾瑞珍), Yang Z-L(杨正林), Zhu H-T(朱海涛), Zhong B-Q(钟秉强), Ling Y-H(凌英华), He G-H(何光华). Additive effects and epistasis effects of QTL for plant height and its components using single segment substitution lines (SSSLs) in rice. Acta Agron Sin (作物学报), 2009, 35(1): 48-56 (in Chinese with English abstract) [28]Zhang Z-M(张泽民), Zhu H-T(朱海涛), Wang J(王江), Chen Z-G(陈兆贵), Liu F(刘芳), Wan X-S(宛新杉), Zhang J-L(张景六), Zhang G-Q(张桂权). Genetic analysis of a more-tiller mutant by T-DNA insertion in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(11): 1737-1741 (in Chinese with English abstract) [29]Wang J-K(王建康), Pfeiffer W H. Principle of simulation modeling with applications in plant breeding (in Chinese). Sci Agric Sin (中国农业科学), 2007, 40(1): 1-12 (in Chinese with English abstract) [30]Wang J, Ginkel M, Trethowan R, Ye G, DeLacy I H, Podlich D, Cooper M. Simulating the effects of dominance and epistasis on selecting response in the CIMMYT wheat breeding program using QuCim. Crop Sci, 2004, 44: 2006-2018 [31]Wang J, Singh R P, Braun H J, Pfeiffer W H. Investigating the efficiency of the single backcrossing breeding strategy through computer simulation. Theor Appl Genet, 2009, 118: 683-694 [32]Wang J, Eagles H A, Trethowan R, Ginkel M. Using computer simulation of the selection process and known gene information to assist in parental selection in wheat quality breeding. Aust J Agric Res, 2005, 56: 465-473 [33]Wang J, Chapman S C, Bonnett D B, Rebetzke G J, Crouch J. Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci, 2007, 47: 580-588 [34]Wang J, Chapman S C, Bonnett D G, Rebetzke G J. Simultaneous selection of major and minor genes: use of QTL to increase selection efficiency of coleoptile length of wheat (Triticum aestivum L.). Theor Appl Genet, 2009, 119: 65-74 [35]Zhang Q. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409 [36]Wei X, Liu L, Xu J, Jiang L, Zhang W, Wang J, Zhai J, Wan J. Breeding strategies for optimum heading date using genotypic information in rice. Mol Breed, 2009, 25: 287-298 [37]Chen L, Zhao Z, Liu X, Liu L, Jiang L, Liu S, Zhang W, Wang Y, Liu Y, Wan J. Marker-assisted breeding of a photoperiod-sensitive male sterile japonica rice with high cross-compatibility with indica rice. Mol Breed, 2010, DOI: 10.1007/s11032-010-9427-z (online published) [38]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda, H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714-718 [39]McMullen M D, Kresovich S, Villeda H S, Bradbury P J, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of the maize nested association mapping population. Science, 2009, 325: 737-740 [40]The Complex Trait Consortium. The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet, 2004, 36: 1133-1137 [41]Hopspital F, Chevalet C, Mulsant P. Using markers in gene introgression breeding programs. Genetics, 1992, 132: 1199-1210 [42]Frisch M, Bohn M, Melchinger A E. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci, 1999, 39: 1295-1301 [43]Frisch M, Melchinger A E. Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci, 2001, 41: 1716-172 [44]Frisch M, Melchinger A E. Selection theory for marker-assisted backcrossing. Genetics, 2005, 170: 909-917 [45]Prigge V, Melchinger A E, Dhillon B S, Frisch M. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations. Theor Appl Genet, 2009, 119: 23-32 [46]Bernardo R, Charcosset A. Usefulness of gene information in marker-assisted recurrent selection: A simulation appraisal. Crop Sci, 2006, 46: 614-621 [47]Bernardo R, Moreau L, Charcosset A. Number and fitness of selected individuals in marker-assisted and phenotypic recurrent selection. Crop Sci, 2006, 46: 1972-1980 [48]Lorenzana R E, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet, 2009, 120: 151-161 [49]Mayor P J, Bernardo R. Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F2 populations. Crop Sci, 2009, 49: 1719-1725 [50]Bernardo R, Yu J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci, 2007, 47: 1082-1090 [51]Wong C K, Bernardo R. Genomewide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theor Appl Genet, 2008, 116: 815-824 [52]Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci, 2008, 48: 1649-1664 [53]Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 1-12 [54]Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157: 1819-1829 [55]Servin B, Martin O C, Mezard M, Hospital F. Toward a theory of marker-assisted pyramiding. Genetics, 2004, 168: 513-523 [56]Schaeffer L R. Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet, 2006, 123: 218-223 [57]Piyasatian N, Fernando R L, Dekkers J C M. Genomic selection for marker-assisted improvement in line crosses. Theor Appl Genet, 2007, 115: 665-674 [58]de Roos A P, Schrooten C, Mullaart E, Calus M P, Veerkamp R F. Breeding value estimation for fat percentage using dense markers on Bos taurus autosome 14. J Dairy Sci, 2007, 90: 4821-4829 [59]Solberg T R, Sonesson A K, Woolliams J A, Meuwissen T H E. Genomic selection using different marker types and densities. J Anim Sci, 2008, 86: 2447-2454 [60]Habier D, Fernando R L, Dekkers J C M. Genomic selection using low-density marker panels. Genetics, 2009, 182: 343-353 [61]Bernardo R. Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci, 2009, 49: 419-425 [62]Hayes B J, Bowman P J, Chamberlain A J, Goddard M E. Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci, 2009, 92: 433-443 [63]Muir W M. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet, 2007, 124: 342-355 [64]Goddard M E. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 2008, 136: 245-257 [65]Zhong S, Dekkers J C M, Fernando R L, Jannink J L. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics, 2009, 182: 355-364 [66]Metzker M L. Sequencing technologies: the next generation. Nat Rev Genet, 2010, 11: 31-46 [67]Salathia N, Lee H N, Sangster T A, Morneau K, Landry C R, Schellenberg K, Behere A S, Gunderson K L, Cavalieri D, Jander G, Queitsch C. Indel arrays: an affordable alternative for genotyping. Plant J, 2007, 51: 727-737 [68]David Hawkins R, Hon G C, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet, 2010, 11: 476-486 [69]Thomas D. Gene-environment-wide association studies: emerging approaches. Nat Rev Genet, 2010, 11: 259-272 [70]Pastinen, T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet, 2010, 11: 533-538 [71]Cooper M, Podlich D W, Smith O S. Gene-to-phenotype and complex trait genetics. Aust J Agric Res, 2005, 56: 895-918 [72]Houle D, Govindaraju D R, Omholt S. Phenomics: the next challenge. Nat Rev Genet, 2010, 11: 855-866 |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[5] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[6] | YAN Sheng-Ji, DENG Ai-Xing, SHANG Zi-Yin, TANG Zhi-Wei, CHEN Chang-Qing, ZHANG Jun, ZHANG Wei-Jian. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production [J]. Acta Agronomica Sinica, 2022, 48(4): 930-941. |
[7] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[8] | TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694. |
[9] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[10] | JIAN Shu-Lian, LI Shu-Xin, LIU Sheng-Qun, LI Xiang-Nan. Research advances of cover crops and their important roles [J]. Acta Agronomica Sinica, 2022, 48(1): 1-14. |
[11] | WANG Ya-Liang, ZHU De-Feng, ZHANG Yu-Ping, CHEN Ruo-Xia, XIANG Jing, CHEN Hui-Zhe, CHEN Jiang-Hua, WANG Feng. Analysis on the plant growth and yield formation of double cropping late season hybrid rice in machine transplanting with long seedling age by precision drill sowing [J]. Acta Agronomica Sinica, 2022, 48(1): 215-225. |
[12] | SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752. |
[13] | ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823. |
[14] | ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615. |
[15] | XU Yi, ZHANG Li-Lan, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Genomics and genetic improvement in main bast fiber crops: advances and perspectives [J]. Acta Agronomica Sinica, 2021, 47(6): 997-1019. |
|