Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (06): 951-960.doi: 10.3724/SP.J.1006.2013.00951
• REVIEW • Next Articles
LIN Wen-Xiong
[1]Lin W X, Fang C X, Chen T, Lin R Y, Xiong J, Wang H B. Rice allelopathy and its properties of molecular ecology. Front Biol, 2010, 5: 255–262[2]Duke S O. Allelopathy: Current status of research and future of the discipline: a commentary. Allelopathy J, 2010, 25: 17–30[3]Dilday R H, Nastasi P, Smith R J Jr. Allelopathic observation in rice (Oryza sativa L.) to ducksalad (Heteranthera limosa). Proc Arkansas Acad Sci, 1989, 43: 21–22[4]Gealy D, Moldenhauer K, Duke S. Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on 13C isotope discrimination analysis. J Chem Ecol, 2013, 39: DOI: 10.1007/s10886-013-0246-7[5]Kato-Noguchi H,Peters R. The role of momilactones in rice allelopathy, J Chem Ecol, 2013, 39: DOI: 10.1007/s10886-013-0236-9[6]Olofsdotter M. Rice: A step toward use of allelopathy. Agron J, 2001, 93: 3–8[7]Hassan S M, Aidy I R, Bastawisi A O. Weed management using allelopathic rice varieties in Egypt. In: Olofsdotter M ed. Allelopathy in Rice. Proceedings of Workshop on Allelopathy in Rice. Manila (Phhilippines): IRRI, 1998. pp 27–37[8]Kim K U, Shin D H, Lee I J, Kim H Y. Rice allelopathy in Korea. In: Kim K U, Shin D H, eds. Rice Allelopathy. Proceedings of the Workshop in Rice Allelopathy. Taegu (Korea): Kyungpook National University, 2000. pp 57–82[9]Olofsdotter M, Navarez D, Moody K. Allelopathic potential in rice (Oryza sativa) germplasm. Ann Appl Biol, 1995, 127: 543–560[10]Navarez D, Olofsdotter M. Relay seeding technique for screening for allelopathic rice (Oryza sativa L.). In: Brown H, Cussans G W, Devine M D, Duke S O, Fernandez-Quantilla C, Helweg A, eds. Proceedings of the Second International Weed Control Congress. Copenhagen, Denmark, 1996. pp 1285–1290[11]Shen L-H(沈荔花), Liang Y-Y(梁义元), He H-Q(何华勤), He J(何俊), Liang K-J(梁康迳), Lin W-X(林文雄). Evaluation efficiency of different bioassay methods on allelopathic potential of Oryza sativa. Chin J Appl Ecol (应用生态学报), 2004, 15(9): 1575–1579 (in Chinese with English abstract)[12]Wang D-L(王大力), Ma R-X(马瑞霞), Liu X-F(刘秀芬). A preliminary studying on rice allelopathy germplasm. Sci Agric Sin (中国农业科学), 2000, 33(3): 94–96 (in Chinese with English abstract)[13]Xu Z-H(徐正浩), Yu L-Q(余柳青). Ecological control of barnyardgrass by different morphological type rice. Chin J Rice Sci (中国水稻科学), 2000, 14(3): 125–128 (in Chinese with English abstract)[14]Olofsdotter M. Weed suppressing rice cultivars—Does allelopathy play a role? Weed Res, 1999, 39: 441–454[15]Olofsdotter M, Jensen L B, Courtois B. Review: Improving crop competitive ability using allelopathy—an example from rice. Plant Breed, 2002, 121: 1–9[16]Lin W-X(林文雄), He H-Q(何华勤), Dong Z-H(董章杭), Shen L-H(沈荔花), Duo Y-C(郭玉春), Liang Y-Y(梁义元), Chen F-Y(陈芳育), Liang K-J(梁康迳). Study on developmental inheritance of allelopathy in rice (Oryza sativa L.) under different environment. Acta Agron Sin (作物学报), 2004, 30(4): 348–353 (in Chinese with English abstract)[17]Xu Z-H(徐正浩), Guo D-P(郭得平), Yu L-Q(余柳青), Zhao M(赵明), Zhang X(张旭), Li D(李迪), Zheng K-L(郑康乐), Ye Y-L(叶元林). Molecular biological study on the action mechanism of rice allelochemicals against weeds. Chin J Appl Ecol (应用生态学报), 2003, 14(5): 829–833 (in Chinese with English abstract)[18]Wang H-B(王海斌), Yu Z-M(俞振明), He H-B(何海斌), Guo X-K(郭徐魁), Huang J-W(黄锦文), Zhou Y(周阳), Xu Z-B(徐志斌), Lin W-X(林文雄). Relationship between allelopathic potential and grain yield of different allelopathic rice accessions. Chin J Eco-Agric (中国生态农业学报), 2012, 20(1): 75–79 (in Chinese with English abstact)[19]Mallik A U. Challenge and opportunity in allelopathy research: a brief over review. J Chem Ecol, 2000, 26: 10–14[20]Dilday R H, Lin J, Yan W. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust J Exp Agric, 1994, 34: 907–910[21]Dilday R H, Yan W G, Moldenhauer K A K. Allelopathic Activity in rice for controlling major aquatic weeds. Manila (Phhilippines): IRRI, 1998. pp 7–26[22]Dilday R H, Mattice J D, Moldenhauer K A. An overview of rice allelopathy in the USA. In: Kim K U, Shin D H, eds. Rice Allelopathy. Proceedings of the Workshop in Rice Allelopathy. Taegu (Korea): Kyungpook National University, 2000. pp 15–26[23]Dilday R H, Nastasi P, Smith R J J. Allelopathic activity in rice (Oryza sativa L.) against ducksalad (Heteranthera limosa). USDA, Washington, DC, 1991. pp 193–201[24]Jensen L B, Courtois B, Shin L S, Li Z K, Olofsdotter M, Mauleon R P. Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron J, 2001, 93: 21–26[25]Jensen L B, Olofsdotter M. Genetic control of allelopathyin rice (Oryza sativa L.) research. In: Kim K U, ed. Rice Allelopathy. Korea: Taegu Ililsa Press, 2000. pp 27–40[26]Ebana K, Yan W G, Dilday R, Namai H, Okuno K. Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts. Breed Sci, 2001, 51: 47–51[27]Xu Z-H(徐正浩), He Y(何勇), Cui S-R(崔绍荣), Zhao M(赵明), Zhang X(张旭), Li D(李迪). Genes mapping on rice allelopathy against barnyardgrass. Chin J Appl Ecol (应用生态学报), 2003, 14(12): 2258–2260 (in Chinese with English abstact)[28]Zeng D L, Qian Q, Teng S, Dong G J, Fujimoto H, Yasufumi K, Zhu L H.Genetic analysis of rice allelopathy. Chin Sci Bull, 2003, 48: 265–268[29]Lee S B, Seo K I, Koo J H, Hur H S, Shin J C. QTLs and molecular markers associated with rice allelopathy. In: Haper J D I, An M, Kent J H, eds. Proceedingss of the Fourth World Congress on Allelopathy “Establishing the scientific base”. Australia: Charles Sturt Universit, Wagga Wagga, NSW, 2005. pp 505–507[30]Xiong J, Jia X L, Deng J Y, Jiang B Y, He H B, Lin W X. Analysis of epistatic effect and QTL interactions with environment for allelopathy in rice (Oryza sativa L.). Allelopathy J, 2007, 20: 259–268 [31]He H Q, Shen L H, Xiong J, Jia X L, Lin W X, Wu H. Conditional genetic effect of allelopathy in rice (Oryza sativa L.) under different environmental conditions. Plant Growth Regul, 2004, 44: 211–218[32]Lin W X, Kim K U, Shin D H. Allelopathic potential in rice (Oryza sativa L.) and its modes of action on barnyardgrass (Echinochloa crusgalli L.). Allelopathy J, 2000, 7: 215–224[33]Duke S O, Baerson S R, Rimando A M, Pan Z, Dayan F E, Belz R G. Biocontrol of weeds with allelopathy conventional and transgenic approaches. In: Vurro M, Gressel J, eds. Novel biotechnologies for biocontrol agent enhancement and management. Berlin: Springer-Verlag, Heidelberg, 2007. pp 75–85[34]Kato-Noguchi H, Ino T, Sata N, Yamamura S. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol Plant, 2002, 115: 401–405[35]Kato-Noguchi H, Ino T. Rice seedlings release momilactone B into the environment. Phytochemistry, 2003, 63: 551–554[36]Kato-Noguchi H. Allelopathic substance in rice root exudates: rediscovery of momilactone B as an allelochemical. J Plant Physiol, 2004, 161: 271–276[37]Kato-Noguchi H. Barnyard grass-induced rice allelopathy and momilactone B. J Plant Physiol, 2011, 168: 1016–1020[38]Kong C H, Zhao H, Xu X H, Wang P, Gu Y. Activity and allelopathy of soil of flavone O-Glycosides from rice. J Agr Food Chem, 2007, 55: 6007–6012[39]Kong C H, Wang P, Gu Y, Xu X H, Wang M L. Fate and impact on microorganisms of rice allelochemicals in paddy soil. J Agr Food Chem, 2008, 56: 5043-5049[40]Kong C H, Li H B, Hu F, Xu X H, Wang P. Allelochemicals released by rice roots and residues in soil. Plant Soil, 2006, 288: 47–56[41]You L X, Wang P, Kong C H. The levels of jasmonic acid and salicylic acid in a rice-barnyardgrass coexistence system and their relation to rice allelochemicals. Biochem Syst Ecol, 2011, 39: 491–497[42]Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G K, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653[43]Wang H-B(王海斌), Xiong J(熊君), Fang C-X(方长旬), Qiu L(邱龙), Wu W-X(吴文祥), He H-B(何海斌), Lin W-X(林文雄). FQ-PCR analysis on the differential expression of the key enzyme genes involved in isoprenoid metabolic pathway in allelopathic and weak allelopathic rice accessions (Oryza sativa L.) under nitrogen stress condition. Acta Agron Sin (作物学报), 2007, 33(8): 1329–1334 (in Chinese with English abstact)[44]Kato-Noguchi H. Convergent or parallel molecular evolution of momilactone A and B: potent allelochemicals, momilactones have been found only in rice and the moss Hypnum plumaeforme. J Plant Physiol, 2011, 13: 1511–1516[45]Seal A N, Pratley J, Ehaig T. Identification and quantification of compounds in a series of allelopathic and non-allelopathic rice root exudates. J Chem Ecol, 2004, 3: 23–27[46]Rice E L. Allelopathy, 2nd edn. New York: Academic Press, 1984. p 421[47]Chou C H. The role of allelopathy in phytochemical ecology. In: Chou C H, Waller G R, eds. Allelochemicals and Pheromones. Taipei: Institute of Botany, Academia Sinica, Monograph Series, No. 5, 1989. pp 19–38[48]Blum U. Allelopathic interactions involving phenolic acids. J Nematology, 1996, 28: 259–267[49]Blum U, Shafer S R, Lehman M E. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Crit Rev Plant Sci, 1999, 18: 673–693[50]Ohno T. Oxidation of phenolic acid derivatives by soil and its relevancy to allelopathic activity. J Environ Qual, 2001, 30: 1631–1635[51]Einhellig F A. Allelopathy: Current Status and Future Goals. Washington DC: American Chemical Society, 1995. pp 1–24[52]Einhellig F A. Interactions involving allelopathy in cropping systems. Agron J, 1996, 88: 886–893[53]He H-Q(何华勤), Lin W-X(林文雄), Liang Y-Y(梁义元), Song B-Q(宋碧清), Ke Y-Q(柯玉琴), Guo Y-C(郭玉春), Liang K-J(梁康径). Analyzing the molecular mechanism of crop ailelopathy by using differential proteomics. Acta Ecol Sin (生态学报), 2005, 25(12): 3141–3145 (in Chinese with English abstact)[54]Shin D H, Kim K U, Sohn D S. Regulation of gene expression related to allelopathy. In: Kim K U, Shin D H, eds. Proceedings of the Workshop in Allelopathy in Rice. Taegu, Korea: Kyungpook National University, 2000. pp 109–124[55]Kim K U, Shin D H, Lee I J, Kim H Y. Rice allelopathy in Korea. In: Kim K U, Shin D H, eds. Rice Allelopathy. Proceedings of the Workshop in Allelopathy in Rice. Taegu, Korea: Kyungpook National University, 2000. pp 57–82[56]Song B Q, Xiong J, Fang C X, Qiu L, Lin R Y, Liang Y Y, Lin W X. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J Chem Ecol, 2008, 34: 688–695[57]Xiong J (熊君), Lin W-X(林文雄), Zhou J-J(周军健), Wu M-H(吴敏鸿), Chen X-X(陈祥旭), He H-Q(何华勤),Guo Y-Y(郭玉春), Liang Y-Y(梁义元). Allelopathy and resources competition of rice under different nitrogen supplies. Chin J Appl Ecol (应用生态学报), 2005, 16(5): 885–889 (in Chinese with English abstract) [58]He H B, Wang H B, Fang C X, Lin Z H, Yu Z M, Lin W X. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS ONE, 2012, 7: e37201[59]Lin W-X(林文雄). Rice Allelopathy (水稻化感作用). Xiamen: Xiamen University Press, 2005 (in Chinese)[60]Lin W-X(林文雄), He H-B(何海斌), Xiong J(熊君), Shen L-H(沈荔花), Wu M-H(吴敏鸿), Lin R-Y(林瑞余), He H-Q(何华勤), Liang Y-Y(梁义元), Li Z-W(李兆伟), Chen T(陈婷). Advances in the investigation of rice allelopathy and its molecular ecology. Acta Ecol Sin (生态学报), 2006, 26(8): 2687–2694 (in Chinese with English abstact)[61]Wang H B, HeH B, Ye C Y, Lu J C, Chen R S, Liu C H, Guo X K, Lin W X. Molecular physiological mechanism of increased weed suppression ability of allelopathic rice mediated by low phosphorus stress. Allelopathy J, 2010, 25: 239–248[62]Wang H B, He H B, Ye C Y, Lu J C, Chen R S, Guo X K, Liu C H, Lin W X. Physiological responses of allelopathic rice accessions to low phosphorus stress. Allelopathy J, 2009, 23: 175-184[63]Bi H H, Zeng R S, Su L M, An M, Luo S M. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol, 2007, 33: 1089–1103[64]Fang C X, Xiong J, Qiu L, Wang H B, Song B Q, He H B, Lin R Y, Lin W X. Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regul, 2009, 57: 163–172[65]Qiu L(邱龙), Wang H-B(王海斌), Xiong J(熊君), Fang C-X(方长旬), Wu W-X(吴文祥), He H-B(何海斌), Lin W-X(林文雄). Regulation effect of exogenous salicylic acid on weed suppression and molecular physiological characteristics of ailelopathic rice. Chin J Appl Ecol (应用生态学报), 2008, 19(2): 330–336 (in Chinese with English abstact)[66]Blum U. Plant-plant allelopathic interactions. Phenolic acids, cover crops and weed emergence. Springer Science Business Media, Dordrecht, 2011[67]Kaur H, Kaur R, Kaur S, Baldwin I T, Inderjit. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE, 2009, 3: e4700[68]Bais H P, Vepachedu R, Gilroy S, Callaway R M, Vivanco J M. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 2003, 301: 1377–1380[69]Perry L G, Thelen G C, Ridenour W M, Callaway R M, Paschke M W, Vivanco J M. Concentrations of the allelochemical (+/?)-catechinin Centaureamaculosa soils. J Chem Ecol, 2007, 33: 2337–2344[70]Blair A C, Nissen S J, Brunk G R, Hufbauer R A. A lack of evidence for an ecological role of the putative allelochemical (+/?)-catechin in spotted knapweed invasion success. J Chem Ecol, 2006, 32: 2327–2331[71]Tharayil N, Bhowmik P, Alpert P, Walker E, Amarasiriwardena D, Xing P. Dual purpose secondary compounds: phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol, 2009, 181: 424–434[72]Bais H P, Walker T S, Stermitz F R, Hufbauer R A, Vivanco J M. Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol, 2002, 128: 1173–1179[73]Bais H P. Corrections and clarifications. Science, 2010, 327: 781[74]Hoagland L, Carpenter-Boggs L, Reganold J P, Mazzola M. Role of native soil biology in Brassicaceous seed meal-induced weed suppression. Soil Biol Biochem, 2008, 40: 1689–1697[75]Mazzola M, Reardon C L, Brown J. Initial pythium species composition and brassicaceae seed meal type influence extent of pythium-induced plant growth suppression in soil. Soil Biol Biochem, 2012, 48: 20–27[76]Gimsing A L, Baelum J, Dayan F E, Locke M A, Sejerø L H, Jacobsen C S. Mineralization of the allelochemical sorgoleone in soil. Chemosphere, 2009, 76: 1041–1047[77]Barto E K, Cipollini D. Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere, 2009, 76: 71–75[78]Zhang Z Y, Pan L P, Li H H. Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J Appl Microbiol, 2010, 108: 1839–1849[79]Lin R Y, Wang H B, Guo X K, Ye C Y, He H B, Zhou Y, Lin W X. Impact of applied phenolic acids on the microbes, enzymes and available nutrients in paddy soils. Allelopathy J, 2011, 28: 225–236[80]Broz A K, Manter D K, Callaway R M, Paschke M W, Vivanco J M. A molecular approach to understanding plant-plant interactions in the context of invasion biology. Funct Plant Biol, 2008, 35: 1123–1134[81]Inderjit. Novel weapons hypothesis: an ecologically relevant way to study allelopathy. Proceedings of the 6th World Congress on Allelopathy, Guangzhou, China, 2011. p 9[82]Weston L. Plant root exudation and rhizodeposition-the role of allelochemicals in the rhizosphere. Proceedings of the 6th World Congress on Allelopathy, Guangzhou, China, 2011. p 5[83]Blum U. Plant-Plant Allelopathy Interaction. New York: Springer. 2011. pp 1–20 [84]Blum U. Effects of microbial utilization of allelopathic phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol, 1998, 24: 685–708[85]Inderjit. Soil microorganisms: An important determinant of allelopathic activity. Plant Soil, 2005, 274: 227–236[86]Schmidt S K, Ley R E. Microbial competition and soil structure limit the expression of phytochemicals in nature. In: Inderjit, Dakshini K M M, Foy C L, eds. Principles and practices in plant ecology: Allelochemical interactions. CRC Press, Boca Raton, FLDalton, 1999. pp 339–351[87]Kaur H, Inderjit, Keating K I. Do allelochemicals operate independent of substratum factors? In: Inderjit, Mallik A U, eds. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Birkhauser-Verlag AG, Basal, 2002. pp 99–107[88]Xiong J(熊君), Wang H-B(王海斌), Fang C-X(方长旬), Qiu L(邱龙), Wu W-X(吴文祥), He H-B(何海斌), Lin W-X(林文雄). The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2007, 33(5): 387–394 (in Chinese with English abstact)[89]Fang C-X(方长旬), Wang Q-S(王清水), Yu Y(余彦), Luo M-R(罗美蓉), Huang L-K(黄力坤), Xiong J(熊君), Shen L-H(沈荔花), Lin W-X(林文雄). Differential expression of PAL multigene family in allelopathic rice and its counterpart exposed to stressful conditions. Aca Ecol Sin (生态学报), 2011, 31(16): 4760–4767 (in Chinese with English abstact)[90]Fang C X, Zhuang Y E, Xu T C, Li Y Z, Li Y, Lin W X. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. J Chem Ecol, 2013, 39: DOI: 10.1007/s10886-013-0249-4 [91]Xiong J(熊君), Lin H-F(林辉锋), Li Z-F(李振方), Fang C-X(方长旬), Han Q-D(韩庆典), Lin W-X(林文雄). Analysis of rhizosphere microbial community structure of weak and strong allelopathic rice varieties under dry paddy field. Acta Ecol Sin (生态学报), 2012, 32(19): 6100–6109 (in Chinese with English abstract)[92]Wang H B, Zhang Z X, Li H, He H B, Fang C X, Zhang A J, Li Q S, Chen R S, Guo X K, Lin H F, Wu L K, Lin S, Chen T, Lin R Y, Peng X X, Lin W X. Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res, 2011, 10: 932–940[93]Wu L K, Wang H B, Zhang Z X, Lin R, Zhang Z Y, Lin W X. Comparative metaproteomic analysis on consecutively rehmannia glutinosa-monocultured rhizosphere soil. PloS ONE, 2011, 6: e20611[94]Bode H B, Muller R. Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Plant Physiol, 2003, 132: 1153–1161[95]Gerth K, Pradella S, Perlova O, Beyer S, Müller R. Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol, 2003, 106: 233–253[96]Ward M J, Zusman D R. Motility in Myxococcus xanthus and its role in developmental aggregation. Curr Opin Microbiol, 1999, 2: 624–629[97]Kaiser D. Signaling in myxobacteria. Annu Rev Microbiol, 2004, 58: 75–98[98]Kaimer C, Berleman J E, Zusman D R. Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus. Curr Opin Microbiol, 2012, 15: 751–757[99]Pathak D T, Wei X, Wall D. Myxobacterial tools for social interactions. Res Microbiol, 2012, 163: 579–589[100]Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol, 2010, 11: 705–719 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|