Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (01): 143-153.doi: 10.3724/SP.J.1006.2014.00143


Effects of Leaf Removal on Canopy Apparent Photosynthesis and Individual Leaf Photosynthetic Characteristics in Summer Maize under High Plant Density

LIU Tie-Ning,XU Cai-Long,GU Li-Min,DONG Shu-Ting*   

  1. State Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai’an 271018, China
  • Received:2013-05-03 Revised:2013-07-25 Online:2014-01-12 Published:2013-09-29
  • Contact: State Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai’an 271018, China E-mail:liutiening0319@163.com


The improved grain yield of modern maize hybrids is due to the increased plant population density. However, the high plant density makes the solar radiation intercepted by ear leaves decreased, and the growth rate of individual plant suppressed. Consequently, how to coordinate the relationship between canopy apparent photosynthesis (CAP) and individual leaf photosynthesis capacity under high plant density is an important problem we are facing. A field experiment was conducted using summer maize (Zea mays L.) Zhengdan 958 (a compact cultivar) and Jinhai 5 (a semi-compact cultivar) grown at a plant density of 105 000 plants ha–1, to research the impact of leaf removal on CAP, individual leaf photosynthetic characteristics and anti-oxidative metabolism, which will provide theoretical basis and technical supports for super-high-yield cultivation and breeding. At three days after anthesis (DAA), the defoliation treatments consisted of two (S1), four (S2) or six leaves (S3) removal from the top of a plant were imposed, and no leaf removal as control (S0). The results indicated that leaf removal could significantly improve light transmission ratio (LT) after anthesis, but decrease leaf area index (LAI) of S2 and S3, resulting in the decrease of effective quantum yield of PSII (ΦPSII) and maximal efficiency of photosystem II photochemistry (Fv/Fm) sharply because of light leakage losses. CAP was significantly affected by defoliation treatments: for S1, CAP increased and longer durations of CAP and LAI were maintained during grain filling, resulting in a higher grain yield, whereas CAP in S2 and S3 treatments was inhibited and drastically declined, indicating that CAP is closely related to changes in available leaf area. Compared with S0, the CAP in S1 treatment increased by 12.49% for Zhengdan 958, and by 23.08% for Jinhai 5, indicating that effect of excising two leaves on CAP was more apparent for Jinhai5 than for Zhengdan 958. Moreover, an increase in net photosynthetic rate (Pn), stomatal conductance (gs) and the chlorophyll content (Chl) of ear leaf in S2 and S3 treatments was observed prior to 26 DAA, and S1 treatment had the advantage of individual photosynthetic capacity, thereafter. A analysis of leaf senescence revealed that activities of superoxide dismutase (SOD) and peroxidase (POD) in S2 and S3 treatments were significantly suppressed since 13 DAA compared with control, whereas those in S1 were markedly enhanced, indicating that leaf senescence was delayed by excising two leaves under high plant densities. However, the content of MDA in S1 was decreased. Among all the defoliation treatments, maize plants under two-leaf removal condition had higher Pn, LAI and anti-oxidative enzyme activity as well as lower MDA content during grain filling, leading to a higher CAP. The results indicated that excising two leaves made plants of both maize cultivars more tolerant to high plant density of 105 000 plants ha-1 due to the lesser damage and a better photosynthetic capacity in an ear leaf as well as a more efficient canopy structure, resulting in a better coordination between population and individuals. In addition, relative to Zhengdan 958, the effects of leaf removal on Jinhai 5 were more apparent.

Key words: Summer maize, High plant density, Leaf removal, Canopy apparent photosynthesis, Individual leaf photosynthesis

[1]Tokatlidis I S, Koutroubas S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004, 12: 103–114

[2]段民孝. 从农大108和郑单958中得到的玉米育种启示. 玉米科学, 2005, 13(4): 49–52

Duan M X. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. J Maize Sci , 2005, 13(4): 49–52 (in Chinese with English abstract)

[3]卫丽, 熊友才, 马超, 张慧琴, 邵阳, 李朴芳. 不同群体结构夏玉米灌浆期光合特征和产量变化. 生态学报, 2011, 31: 2524–2531

Wei L, Xiong Y C, Ma B L, Ma C, Zhang H Q, Shao Y, Li P F. Photosynthetic characterization and yield of summer corn (Zea mays L.) during grain filling stage under different planting pattern and population densities. Acta Ecol Sin, 2011, 31: 2524–2531 (in Chinese with English abstract)

[4]Borras L, Westgate M E, Astin J P, Echarte L. Coupling time to silking with plant growth rate in maize. Field Crops Res, 2007, 102: 73–85

[5]赵明, 李少昆, 王志敏, 王树安. 论作物源的数量、质量关系及其类型划分. 中国农业大学学报, 1998, 3(3): 53–58

Zhao M, Li S K, Wang Z M, Wang S A. Exposition on genotypes classification and relationship between quality and quantity of crop source. J China Agric Univ, 1998, 3(3): 53–58 (in Chinese with English abstract)

[6]杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226–1233

Yang G S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226–1233 (in Chinese with English abstract)

[7]董树亭, 胡昌浩, 岳寿松, 王群瑛, 高荣岐, 潘子龙. 夏玉米群体光合速率特性及其与冠层结构、生态条件的关系. 植物生态学与地植物学学报, 1992, 16: 372–377

Dong S T, Hu C H, Yue S S, Wang Q Y, Gao R Q, Pan Z L. The relationship between canopy apparent photosynthesis, canopy structure and ecological conditions. Acta Phytoecol Geobot Sin, 1992, 16: 372–377 (in Chinese with English abstract)

[8]Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385–403

[9]盛承发. 生长的冗余—作物对于虫害超越补偿作用的一种解释. 应用生态学报, 1990, 1: 26–30

Sheng C F. Growth tedionsness as an explanation of over compensation of crops for insect feeding. Chin J Appl Ecol, 1990, 1: 26–30 (in Chinese with English abstract)

[10]李话, 张大勇. 半干旱地区春小麦根系形态特征与生长冗余的初步研究. 应用生态学报, 1999, 10: 26–30

Li H, Zhang D Y. Morphological characteristics and growth redundancy of spring wheat root system in semi arid regions. Chin J Appl Ecol, 1999, 10: 26–30 (in Chinese with English abstract)

[11]韩明春, 吴建军, 王芬. 冗余理论及其在农业生态系统管理中的应用. 应用生态学报, 2005, 16: 375–378

Han M C, Wu J J, Wang F. Redundancy theory and its application in agro-ecosystem management. Chin J Appl Ecol, 2005, 16: 375–378 (in Chinese with English abstract)

[12]郝梦波, 王空军, 董树亭, 张吉旺, 李登海, 刘鹏, 杨今胜, 柳京国. 高产玉米叶片冗余及其对产量和光合特性的影响. 应用生态学报, 2010, 21: 344–350

Hao M B, Wang K J, Dong S T, Zhang J W, Li D H, Liu P, Yang J S, Liu J G. Leaf redundancy of high-yielding maize (Zea may L.) and its effects on maize yield and photosynthesis. Chin J Appl Ecol (应用生态学报), 2010, 21: 344–350 (in Chinese with English abstract)

[13]Ahmadi A, Joudi M. Effects of timing and defoliation intensity on growth, yield and gas exchange rate of wheat grown under well-watered and drought conditions. Pak J Biol Sci, 2007, 10: 3794–3800

[14]Rajcan I, Tollenaar M. Source: sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling. Field Crops Res, 1999, 60: 245–253

[15]Uhart S A, Andrade F H. Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios. Crop Sci, 1995, 35: 183–190

[16]Yin Y, Wang Z, He M, Fu J, Lu S. Postanthesis allocation of photosynthesis and grain growth in wheat cultivars as affected by source/sink change. Biol Plant, 1998, 41: 203–209

[17]严云, 廖成松, 张福锁, 李春俭. 密植条件下玉米冠根生长抑制的因果关系. 植物营养与肥料学报, 2010, 16: 257–265

Yan Y, Liao C S, Zhang F S, Li C J. The causal relationship of the decreased shoot and root growth of maize plants under higher plant density. Plant Nutr Fert Sci, 2010, 16: 257–265 (in Chinese with English abstract)

[18]Zhu G X, Midmore D J, Yule D F, Radford B J. Effect of timing of defoliation on wheat (Triticum aestivum) in central Queensland 2. N uptake and relative N use efficiency. Field Crops Res, 2006, 96: 160–167

[19]Tollenaar M, Daynard T B. Effect of defoliation on kernel development in maize. Can J Plant Sci, 1978, 58: 207–212

[20]Dreccer M F, Grashoff C, Rabbinge R. Source-sink ratio in barley (Hordeum vulgare L.) during grain filling: effects on senescence and grain protein concentration. Field Crops Res, 1997, 49: 269–277

[21]刘国顺, 习向银, 时向东, 周世民, 秦艳青. 剪叶处理对烤烟漂浮育苗中烟草生长及生理特性的影响. 中国烟草科学, 2003, (1): 25–27

Liu G S, Xi X Y, Shi X D, Zhou S M, Qin Y Q. Effects of clipping treatment on growth and physiological characteristics of flue-cured tobacco seedlings in floating system. Chin Tob Sci, 2003, (1): 25–27 (in Chinese with English Abstract)

[22]李跃强, 宣维健, 盛承发. 大强度去叶对棉花叶绿素和保护酶系的影响. 生态学报, 2006, 26: 830–836

Li Y Q, Xuan W J, Sheng C F. Activities of chlorophyll and protective enzyme systems in cotton plants Gossypium hirsutum L. with heavy leaf removal by no overcompensation. Acta Ecol Sin, 2006, 26: 830–836 (in Chinese with English Abstract)

[23]Tollenaar M, Daynard T B. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1982, 62: 855–860

[24]Dong S T, Hu C H, Gao R Q. Rates of apparent photosynthesis, respiration and dry matter accumulation in maize canopies. Biol Plant, 1993, 35: 273–277

[25]Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris L. Plant Physiol, 1949, 24: 1–15

[26]赵世杰, 史安国, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 2002. pp 55–143

Zhao S J, Shi A G, Dong X C. Laboratory Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 2002. pp 55–143 (in Chinese)

[27]Giannopolitis C, Ries S. Super oxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309–314

[28]Klapheck S, Zimmer I, Cosse H. Scavenging of hydrogen peroxide in the endosperm of ricinus communis by ascorbate peroxidase. Plant Cell Physiol, 1990, 31: 1005–1013

[29]Monneveux P, Pastenes C, Reynolds M P. Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes. J Plant Physiol, 2003, 160: 657–666

[30]刘万代, 尹钧, 朱高纪. 剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响. 中国农业科学, 2007, 40: 1353–1360

Liu W D, Yin J, Zhu G J. Effects of leaf removal on dry matter accumulation and grain yield in different spike-type wheat varieties. Sci Agric Sin, 2007, 40: 1353–1360 (in Chinese with English abstract)

[31]Apel K, Hirt H. Reactive oxygen species: Metabolism oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399

[32]Moller I M. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 561–591

[33]Garnczarska M, Bednarski W, Morkunas I. Re-aeration-induced oxidative stress and antioxidative defenses in hypoxically pretreated lupine roots. J Plant Physiol, 2004, 161: 415–422

[34]Sundar D, Chaitanya K V, Jutur P P, Reddy A R. Low temperature-induced changes in antioxidative metabolism in rubber-producing shrub, guayule (Parthenium argentatum Gray). Plant Growth Regul, 2004, 44: 175–181

[35]Christensen L E, Below F E, Hageman R H. The effect of ear removal on senescence and metabolism of maize. Plant Physiol, 1981, 68: 1180–1185

[36]Crafts-Brandner S J, Below F E, Harper J E, Hageman R H. Differential senescence of maize hybrids following ear removal. I. Whole plant. Plant Physiol, 1984, 74: 360–367

[37]Borrás L, Maddonni G A, Otegui M E. Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Res, 2003, 82: 13–26

[38]董树亭, 王空军, 胡昌浩. 玉米品种更替过程中群体光合特性的演变. 作物学报, 2000, 26(2): 200–204

Dong S T, Wang K J, Hu C H. Development of canopy apparent photosynthesis among maize varieties from different eras. Acta Agron Sin (作物学报), 2000, 26(2): 200–204 (in Chinese with English Abstract)

[39]郭江, 肖凯, 郭新宇, 张凤路, 赵春江. 玉米冠层结构、光分布和光合作用研究综述. 玉米科学, 2005, 13(2): 55–59

Guo J, Xiao K, Guo X Y, Zhang F L, Zhao C J. Review on maize canopy structure, light distributing and canopy photosynthesis. J Maize Sci (玉米科学), 2005, 13(2): 55–59 (in Chinese with English Abstract)

[40]Gelang J, Pleijel H, Sild E, Danielsson H, Younis S, Selldén G. Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum L.) exposed to different concentrations of ozone. Physiol Plant, 2000, 110: 366–375

[41]胡昌浩, 董树亭, 岳寿松, 王群瑛, 高荣岐, 潘子龙. 高产夏玉米群体光合速率与产量关系的研究. 作物学报, 1993, 19: 63–69

Hu C H, Dong S T, Yue S S, Wang Q Y, Gao R Q, Pan Z L. The research on the relationship between canopy apparent photosynthesis and the yield of high-yield corn. Acta Agron Sin (作物学报), 1993, 19: 63–69 (in Chinese with English abstract)

[42]徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军. 玉米株型与群体光合作用的关系研究. 作物学报, 1995, 21: 492–496

Xu Q Z, Wang Q C, Niu Y Z, Wang Z X, Zhang J. The relationship between corn plant type and canopy apparent photosynthesis. Acta Agron Sin (作物学报), 1995, 21: 492–496 (in Chinese with English Abstract)

[1] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[2] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[3] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[4] XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2021, 47(3): 566-574.
[5] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[6] MA Zheng-Bo, DONG Xue-Rui, TANG Hui-Hui, YAN Peng, LU Lin, WANG Qing-Yan, FANG Meng-Ying, WANG Qi, DONG Zhi-Qiang. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics [J]. Acta Agronomica Sinica, 2020, 46(10): 1617-1627.
[7] CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao,HAN Kun. The root-layer regulation based on the depth of phosphate fertilizer application of summer maize improves soil nitrogen absorption and utilization [J]. Acta Agronomica Sinica, 2020, 46(02): 238-248.
[8] WAN Ze-Hua,REN Bai-Zhao,ZHAO Bin,LIU Peng,ZHANG Ji-Wang. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities [J]. Acta Agronomica Sinica, 2019, 45(9): 1446-1453.
[9] ZHOU Bao-Yuan,MA Wei,SUN Xue-Fang,DING Zai-Song,LI Cong-Feng,ZHAO Ming. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system [J]. Acta Agronomica Sinica, 2019, 45(4): 589-600.
[10] Chao GAO,Xue-Wen LI,Yan-Wei SUN,Ting ZHOU,Gang LUO,Cai CHEN. Spatiotemporal characteristics of water requirement and agricultural drought during summer maize season in Huaihe River Basin [J]. Acta Agronomica Sinica, 2019, 45(2): 297-309.
[11] WANG Hong-Zhang,LIU Peng,JIA Xu-Cun,LI Jing,REN Hao,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin. Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements [J]. Acta Agronomica Sinica, 2019, 45(10): 1544-1553.
[12] CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao. Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage [J]. Acta Agronomica Sinica, 2019, 45(10): 1565-1575.
[13] Rong-Fa LI,Peng LIU,Qing-Long YANG,Hao REN,Shu-Ting DONG,Ji-Wang ZHANG,Bin ZHAO. Effects of Lower Leaf Senescence on Carbon and Nitrogen Distribution and Yield Formation in Maize (Zea mays L.) with High Planting Density [J]. Acta Agronomica Sinica, 2018, 44(7): 1032-1042.
[14] Dan-Dan HU,Ji-Wang ZHANG,Peng LIU,Bin ZHAO,Shu-Ting DONG. Effects of Mixed-cropping with Different Varieties on Photosynthetic Characteristics and Yield of Summer Maize under Close Planting Condition [J]. Acta Agronomica Sinica, 2018, 44(6): 920-930.
[15] Shang GAO,Bo MING,Lu-Lu LI,Rui-Zhi XIE,Jun XUE,Peng HOU,Ke-Ru WANG,Shao-Kun LI. Relationship between Grain Dehydration and Meteorological Factors in the Yellow-Huai-Hai Rivers Summer Maize [J]. Acta Agronomica Sinica, 2018, 44(12): 1755-1763.
Full text



No Suggested Reading articles found!