Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1544-1553.doi: 10.3724/SP.J.1006.2019.93002


Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements

WANG Hong-Zhang,LIU Peng(),JIA Xu-Cun,LI Jing,REN Hao,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2019-01-22 Accepted:2019-05-12 Online:2019-10-12 Published:2019-09-10
  • Contact: Peng LIU E-mail:liupengsdau@126.com
  • Supported by:
    This study was supported by the National Key R&D Program of China(2016YFD0300106);the National Natural Science Foundation of China(31771713);the National Natural Science Foundation of China(31371576);the Shandong Modern Agricultural Industry Technical System Project(SDAIT02-08)


Our study was conducted in Tai’an, Zibo, and Yantai city from 2017 to 2018. According to the production research and experience of high-yield summer maize, three cultivation modes simulating super-high production level (SH), high production and high-efficiency production level (HH), and farmer production level (FP) were comprehensively set up in the same plot. The fertilizer blanks were applied with no nitrogen (SHN0, HHN0, FPN0), no phosphorus (SHP0, HHP0, FPP0), and no potassium (SHK0, HHK0, FPK0). Quantitative analysis of the yield gap and fertilizer utilization efficiency gap under different yield levels was carried out to explore the factors affecting yield gap and efficiency gap, and the way to reduce the gap and improve the efficiency. The grain yields of SH, HH, and FP of summer maize in Shandong province were realized 68.13%, 63.71%, and 53.22% of the potential yield of light and temperature. The fertilizer utilization efficiency decreased with the enlarged yield gap. The agronomic utilization rates of N, P and K fertilizers in FP were 4.23, 5.83, and 4.94 kg kg -1, respectively. The N, P, and K fertilizer utilization efficiencies of FP were 4.23, 5.83, and 4.94 kg kg -1, and those of SH were 3.84, 4.64, and 2.97 kg kg -1, respectively. After optimizing the cultivation measures, the high-yield and high-efficiency management mode increased the fertilizer utilization efficiency of N, P, and K by 67.07%, 101.35%, and 57.65%, respectively, and the output by 10.49%, as compared with FP. It is an effective technical way to achieve the synergistic improvement of yield and fertilizer use efficiency. The yield performance analysis of summer maize yields showed that with the increase of yield level, the mean leaf area index and the number of panicles per unit area increased significantly, while the number of kernels per panicle, average net assimilation rate and grain weight decreased. At the same time, with the increase of yield level, the accumulation ratio of biomass and N, P, and K uptake decreased in pre-silking stage, and increased in post-silking stage. Therefore, under the condition of keeping functional parameters unchanged on the existing basis, optimizing structural parameters is an effective measure for current yield and efficiency increase, and with the increase of yield, more attention should be paid to structural optimization in post-silking stage.

Key words: summer maize, yield gap, fertilizer utilization

Table 1

Growth stage and meteorological factors during the experiment"

Sowing date
Harvest date
Total days
(MJ m-2)
2017 泰安Tai’an 6/12 10/06 116 1788.8 1102.8 427.5
淄博Zibo 6/12 9/29 109 1778.9 991.5 244.4
烟台Yantai 6/20 10/06 108 1722.5 1067.4 420.8
2018 泰安Tai’an 6/12 10/06 116 1833.3 1175.8 515.4
淄博Zibo 6/13 10/01 110 1875.6 1165.2 632.8
烟台Yantai 6/20 10/08 110 1742.5 1177.5 449.1

Table 2

Plant density and application of fertilizer in different treatments"

(plant hm-2)
Target yield
(kg hm-2)
(kg hm-2)
比例 Percentage
Bell stage
Flowering stage
Milking stage
SH 82500 18000 有机肥OF 7500 100%
N 540 30%PU+10%U 30%U 20%U 10%U
P2O5 180 100%
K2O 360 75% 25%
HH 82500 15000 有机肥OF 7500 100%
N 375 30%PU+10%U 30%U 20%U 10%U
P2O5 150 100%
K2O 300 75% 25%
FP 67500 N 208.5 100%
P2O5 120 100%
K2O 112.5 100%

Table 3

Yield and yield gap at different yield levels"

产量 Yield (t hm-2) 产量差 Yield gap (%)
2017 泰安Tai’an 17.71 12.30 a 11.30 b 9.97 c 30.55 36.19 43.70
淄博Zibo 16.78 12.07 a 11.42 b 9.80 c 28.07 31.94 41.60
烟台Yantai 15.84 11.99 a 11.91 a 9.85 b 24.31 24.81 37.82
2018 泰安Tai’an 19.06 12.53 a 11.33 b 8.75 c 34.26 40.56 54.09
淄博Zibo 20.25 12.34 a 11.29 b 9.41 c 39.06 44.25 53.53
烟台Yantai 19.09 12.41 a 11.46 b 9.56 c 34.99 39.97 49.92
平均Average 18.12 12.27 a 11.45 b 9.56 c 31.87 36.29 46.78

Fig. 1

Biomass of summer maize at different yield levels SH: super-high production level; HH: high production and high-efficiency production level; FP: farmer production level."

Fig. 2

Relationship of biomass percentage between per-silking and post-silking with yield under different yield levels Abbreviations are the same as those given in Fig. 1."

Table 4

Differences in parameters of yield performance equation of summer maize under different yield levels"

Yield level
结构性参数Structural parameter 功能性参数Functional parameter
(×104 hm-2)
(g m-2 d-1)
2017 SH 3.69 a 7.93 a 501.30 b 6.69 b 0.51 a 370.16 b
HH 3.51 b 7.61 a 502.97 b 6.77 b 0.51 a 366.66 b
FP 3.00 c 6.76 b 557.40 a 8.38 a 0.50 a 383.32 a
2018 SH 3.47 a 7.84 a 524.40 b 7.23 b 0.53 a 371.36 a
HH 3.28 b 7.46 a 506.00 c 6.92 c 0.53 a 370.52 a
FP 3.01 c 6.44 b 563.47 a 7.49 a 0.53 a 379.31 a
SH 3.45 7.93 516.20 7.85 0.51 377.38
HH 3.23 7.57 507.50 7.72 0.52 377.76
FP 2.94 6.64 562.57 8.88 0.50 383.86

Fig. 3

N, P, K uptake of summer maize under different yield levels Bars superscripted by different small letters are significantly different between treatments at P < 0.05. Abbreviations are the same as those given in Fig. 1."

Fig. 4

Fertilizer use efficiency of summer maize at different yield levels Bars superscripted by different small letters are significantly different between treatments at P < 0.05. Abbreviations are the same as those given in Fig. 1."

Fig. 5

Relationship between yield of summer maize and fertilizer use efficiency under different yield levels Abbreviations are the same as those given in Fig. 1."

[1] Cassman K G . Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA, 1999,96:5952-5959.
[2] 王庆成, 柴兰高, 李宗新, 刘霞 . 山东省玉米的生产现状与发展策略. 玉米科学, 2006,14(5):159-162.
Wang Q C, Chai L G, Li Z X, Liu X . Current status and development strategies of maize production in Shandong province. J Maize Sci, 2006,14(5):159-162 (in Chinese with English abstract).
[3] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Current status and improvement of fertilizer utilization rate of main grain crops in China. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[4] Yu Y, Huang Y, Zhang W . Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crops Res, 2012,136:65-75.
[5] Prem S, B, Christian D, Latha N, Amit R, Rudy R . Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fert Soils, 2015,51:897-911.
[6] 刘伟, 吕鹏, 苏凯, 杨今胜, 张吉旺, 董树亭, 刘鹏, 孙庆泉 . 种植密度对夏玉米产量和源库特性的影响. 应用生态学报, 2010,21:1737-1743.
Liu W, Lyu P, Su K, Yang J S, Zhang J W, Dong S T, Liu P, Sun Q Q . Effects of planting density on the grain yield and source-sink characteristics of summer maize. Chin J Appl Ecol, 2010,21:1737-1743 (in Chinese with English abstract).
[7] 陈国平, 杨国航, 赵明, 王立春, 王友德, 薛吉全, 高聚林, 李登海, 董树亭, 李潮海, 宋慧欣, 赵久然 . 玉米小面积超高产创建及配套栽培技术研究. 玉米科学, 2008,16(4):1-4.
Chen G P, Yang G H, Zhao M, Wang L C, Wang Y D, Xue J Q, Gao J L, Li D H, Dong S T, Li C H, Song H X, Zhao J R . Studies on maize small area super-high yield trails and cultivation technique. J Maize Sci, 2008,16(4):1-4 (in Chinese with English abstract).
[8] 王启现, 王璞, 申丽霞, 王秀玲, 张红芳, 翟志席 . 施氮时期对玉米土壤硝态氮含量变化及氮盈亏的影响. 生态学报, 2004,24:1582-1588.
Wang Q X, Wang P, Shen L X, Wang X L, Zhang H F, Zhai Z X . Effect of nitrogen application time on dynamics of nitrate content and apparent nitrogen budget in the soil of summer maize fields. Acta Ecol Sin, 2004,24:1582-1588 (in Chinese with English abstract).
[9] 吴永成, 周顺利, 王志敏, 罗延庆 . 华北地区夏玉米土壤硝态氮的时空动态与残留. 生态学报, 2005,25:1620-1625.
Wu Y C, Zhou S L, Wang Z M, Luo Y Q . Dyanmics and residue of soil nitrate in summer maize field of North China. Acta Ecol Sin, 2005,25:1620-1625 (in Chinese with English abstract).
[10] Fang Q X, Yu Q, Wang E L, Chen Y H, Zhang G L, Wang J, Li L H . Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat- maize double cropping system in the North China Plain. Plant Soil, 2006,284:335-350.
[11] Ju X T, Kou C L, Zhang F S, Christie P . Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ Pollut, 2006,143:117-125.
[12] 赵荣芳, 陈新平, 张福锁 . 华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡. 土壤学报, 2009,46:684-697.
Zhao R F, Chen X P, Zhang F S . Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China Plain. Acta Pedol Sin, 2009,46:684-697 (in Chinese).
[13] Bai H Z, Tao F L . Sustainable intensification options to improve yield potential and eco-efficiency for rice-wheat rotation system in China. Field Crops Res, 2017,211:89-105.
[14] Cui Z L, Wang G L, Yue S C, Wu L, Zhang W F, Zhang F S, Chen X P . Closing the N-use efficiency gap to achieve food and environmental security. Environ Sci Technol, 2014,48:5780.
[15] Liu Z J, Yang X G, Lin X M, Hubbard K G, Lyu S, Wang J . Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of northeast China. Sci Total Environ, 2016,541:756-764.
[16] Zhou B Y, Sun X F, Ding Z S, Ma W, Zhao M . Multisplit nitrogen application via drip irrigation improves maize grain yield and nitrogen use efficiency. Crop Sci, 2017,57:1687-1703.
[17] Jin L B, Cui H Y, Li B, Zhang J W, Dong S T, Liu P . Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crops Res, 2012,134:30-35.
[18] 赖荣生, 余海龙, 黄菊莹 . 作物气候生产潜力计算模型研究述评. 江苏农业科学, 2014,42(5):11-14.
Lai R S, Yu H L, Huang J Y . Review on the calculation model of crop climate production potential. Jiangsu Agric Sci, 2014,42(5):11-14 (in Chinese).
[19] 刘江, 潘宇弘, 王平华, 李一鸣, 金磊, 温永菁, 高淑新 . 1966-2015年辽宁省玉米气候生产潜力的时空特征. 生态学杂志, 2018,37:3396-3406.
Liu J, Pan Y H, Wang P H, Li Y M, Jin L, Wen Y J, Gao S X . Spatial and temporal characteristics of climatic potential productivity of maize in Liaoning Province from 1966 to 2015. Chin J Ecol, 2018,37:3396-3406 (in Chinese with English abstract).
[20] 张宾, 赵明, 董志强, 陈传永, 孙锐 . 作物产量“三合结构”定量表达及高产分析. 作物学报, 2007,33:1674-1681.
Zhang B, Zhao M, Dong Z Q, Chen C Y, Sun R . “Three combination structure” quantitative expression and high yield analysis in crops. Acta Agron Sin, 2007,33:1674-1681 (in Chinese with English abstract).
[21] 赵明, 李建国, 张宾, 董志强, 王美云 . 论作物高产挖潜的补偿机制. 作物学报, 2006,32:1566-1573.
Zhao M, Li J G, Zhang B, Dong Z Q, Wang M Y . The compensatory mechanism in exploring crop production potential. Acta Agron Sin, 2006,32:1566-1573 (in Chinese with English abstract).
[22] Godfray H C, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C . Food security: the challenge of feeding 9 billion people. Science, 2010,327(5967):812.
[23] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明 . 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M . Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
[24] Cassman K G, Dobermann A, Walters D T, Yang H S . Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour, 2003,28:315-358.
[25] Lobell D B, Cassman K G, Field C B . Crop yield gaps: their importance, magnitudes, and causes. Annu Rev Environ Resour, 2009,34:179-204.
[26] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然 . 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012,38:80-85.
Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R . Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agron Sin, 2012,38:80-85 (in Chinese with English abstract).
[27] Tilman D, Balzer C, Hill J, Befort B L . Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011,108:20260.
[28] Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S . Agricultural sustainability and intensive production practices. Nature, 2002,418:671-677.
[29] Zhang W, Cao G, Li X, Zhang H Y, Wang C, Liu Q Q, Chen X P, Cui Z L, Shen J B, Jiang R F, Mi G H, Miao Y X, Zhang F S, Dou Z X . Closing yield gaps in China by empowering smallholder farmers. Nature, 2016,537:671.
[30] Shen J B, Cui Z L, Miao Y X, Mi G H, Zhang H Y, Fan M S, Zhang C C, Jiang R F, Zhang W F, Li H G, Chen X P, Li X L, Zhang F S . Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Global Food Security, 2013,2:1-8.
[31] Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Xue J Q, Wang G L, Wu L, An N, Wu L Q, Ma L, Zhang W F, Zhang F S . Producing more grain with lower environmental costs. Nature, 2014,514:486-489.
[32] 孙宏勇, 张喜英, 陈素英, 王彦梅, 邵立威, 高丽娜 . 气象因子变化对华北平原夏玉米产量的影响. 中国农业气象, 2009,30:215-218.
Sun H Y, Zhang X Y, Chen S Y, Wang Y M, Shao L W, Gao L N . Effect of meteorological factors on grain yield of summer maize in the North China Plain. Chin J Agrometeorol, 2009,30:215-218 (in Chinese with English abstract).
[33] 刘淑云, 董树亭, 胡昌浩, 白萍, 吕新 . 玉米产量和品质与生态环境的关系. 作物学报, 2005,31:571-576.
Liu S Y, Dong S T, Hu C H, Bai P, Lyu X . Relationship between ecological environment and maize yield and quality. Acta Agron Sin, 2005,31:571-576 (in Chinese with English abstract).
[34] Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A . Closing yield gaps through nutrient and water management. Nature, 2013,494:390-390.
[35] Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber G S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet. Nature, 2011,478:337-342.
[36] 李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬生, 王玉华 . 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016, ( 4):1-6.
Li S K, Wang K R, Xie R Z, Hou P, Ming B, Yang X X, Han D S, Wang Y H . Implement dense planting and high-yield mechanized production to achieve high yield and high efficiency of corn. Crops, 2016, ( 4):1-6 (in Chinese with English abstract).
[1] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[2] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[3] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[4] XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2021, 47(3): 566-574.
[5] DU Xiang-Bei, XI Min, KONG Ling-Cong, WU Wen-Ge, CHEN Jin-Hua, XU You-Zun, ZHOU Yong-Jin. Yield gaps of rice-wheat double cropping and its relationship with resource utilization in Yangtze-Huaihe Rivers region [J]. Acta Agronomica Sinica, 2021, 47(2): 351-358.
[6] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[7] MA Zheng-Bo, DONG Xue-Rui, TANG Hui-Hui, YAN Peng, LU Lin, WANG Qing-Yan, FANG Meng-Ying, WANG Qi, DONG Zhi-Qiang. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics [J]. Acta Agronomica Sinica, 2020, 46(10): 1617-1627.
[8] CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao,HAN Kun. The root-layer regulation based on the depth of phosphate fertilizer application of summer maize improves soil nitrogen absorption and utilization [J]. Acta Agronomica Sinica, 2020, 46(02): 238-248.
[9] WAN Ze-Hua,REN Bai-Zhao,ZHAO Bin,LIU Peng,ZHANG Ji-Wang. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities [J]. Acta Agronomica Sinica, 2019, 45(9): 1446-1453.
[10] ZHOU Bao-Yuan,MA Wei,SUN Xue-Fang,DING Zai-Song,LI Cong-Feng,ZHAO Ming. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system [J]. Acta Agronomica Sinica, 2019, 45(4): 589-600.
[11] Chao GAO,Xue-Wen LI,Yan-Wei SUN,Ting ZHOU,Gang LUO,Cai CHEN. Spatiotemporal characteristics of water requirement and agricultural drought during summer maize season in Huaihe River Basin [J]. Acta Agronomica Sinica, 2019, 45(2): 297-309.
[12] CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao. Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage [J]. Acta Agronomica Sinica, 2019, 45(10): 1565-1575.
[13] Rong-Fa LI,Peng LIU,Qing-Long YANG,Hao REN,Shu-Ting DONG,Ji-Wang ZHANG,Bin ZHAO. Effects of Lower Leaf Senescence on Carbon and Nitrogen Distribution and Yield Formation in Maize (Zea mays L.) with High Planting Density [J]. Acta Agronomica Sinica, 2018, 44(7): 1032-1042.
[14] Dan-Dan HU,Ji-Wang ZHANG,Peng LIU,Bin ZHAO,Shu-Ting DONG. Effects of Mixed-cropping with Different Varieties on Photosynthetic Characteristics and Yield of Summer Maize under Close Planting Condition [J]. Acta Agronomica Sinica, 2018, 44(6): 920-930.
[15] Shang GAO,Bo MING,Lu-Lu LI,Rui-Zhi XIE,Jun XUE,Peng HOU,Ke-Ru WANG,Shao-Kun LI. Relationship between Grain Dehydration and Meteorological Factors in the Yellow-Huai-Hai Rivers Summer Maize [J]. Acta Agronomica Sinica, 2018, 44(12): 1755-1763.
Full text



No Suggested Reading articles found!