Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1565-1575.doi: 10.3724/SP.J.1006.2019.93005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage

CHEN Xiao-Ying,LIU Peng(),CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao   

  1. State Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2019-01-28 Accepted:2019-04-15 Online:2019-10-12 Published:2019-09-10
  • Contact: Peng LIU E-mail:liupengsdau@126.com
  • Supported by:
    This study was supported by the National Basic Research Program of China(2016YFD0300106);This study was supported by the National Basic Research Program of China(2018YFD0300603);the National Natural Science Foundation of China(31771713);the National Natural Science Foundation of China(31371576);the Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08)

Abstract:

Phosphorus fertilizer application depths are extremely important for increasing phosphorus uptake and utilization efficiencies. In the present study, root distribution, biomass, grain yield, phosphorus uptake and utilization efficiencies were determined in field experiment and soil column experiment, with five treatments including CK (no P applied), P5 (phosphorus application depth was 5 cm), P10 (phosphorus application depth was 10 cm), P15 (phosphorus application depth was 15 cm), and P20 (phosphorus application depth was 20 cm). Phosphorus fertilizer application depths significantly affected root dry weight and root length of summer maize with a trend of P15>P10>P20>P5>CK. Compared with P5 treatment, averaged grain yield of P15 treatment increased by 23.1% in two years, averaged root dry weight and total root length increased by 13.1% and 22.9% in two years. Both P15 and P20 treatments increased the proportion of root dry weight and root length in the soil layer below -20 cm. The proportion of root dry weight of P15 and P20 treatments reached 35.4% and 36.4%, and the proportion of root length reached 58.7% and 59.3% in soil column experiments; the proportion of root dry weight both reached 19.0% and the proportion of root length reached 39.8% and 39.9% in field experiment, respectively. The optimization of root distribution promoted the accumulation and transport of phosphorus in plants. Compared with P5 treatment, P10, P15, and P20 treatments increased the averaged phosphorus accumulation in two years by 10.6%, 25.2%, and 14.7%, the average phosphorus transport amount in two years by 46.9%, 76.6%, and 57.6%, and the grain yield by 12.9%, 23.1%, and 10.6%, respectively. Compared with P5 treatment, P15 treatment increased the averaged P partial factor productivity, P agronomic efficiency and P apparent utilization efficiency by 19.1 kg kg -1, 19.1 kg kg -1, and 25.2% in two years, respectively. In summary, deep fertilization of phosphorus could increase the distribution of root in deep soil layers, improve the absorption and utilization efficiencies of phosphorus in plants, and significantly improve the grain yield of summer maize. Under the condition of this study, the suitable P fertilizer application depth was 15 cm from the soil surface.

Key words: summer maize, phosphorus application depth, root, yield, phosphorus utilization efficiency

Table 1

Nutrients content of soil in experimental field"

试验类型Experiment 年份
Year
土层
Soil layer
(cm)
pH 有机质
Soil organic matter (g kg-1)
全氮
Total N
(g kg-1)
速效氮
Available N (mg kg-1)
有效磷
Olsen P
(mg kg-1)
速效钾Available K
(mg kg-1)
大田试验
Field experiment
2017 0-20 6.35 13.56 0.92 87.52 18.92 145.07
20-40 7.21 9.51 0.56 58.36 13.15 94.13
40-60 7.42 5.70 0.21 42.68 5.38 57.56
2018 0-20 6.24 14.17 0.96 89.02 19.38 158.86
20-40 7.04 10.37 0.61 60.67 12.21 98.24
40-60 7.34 6.03 0.25 49.31 6.42 68.60
土柱试验Soil column experiment 7.23 10.72 0.73 45.54 15.66 66.98

Fig. 1

Daily mean temperature and rainfall during the growth period of summer maize in the test site"

Fig. 2

Effects of phosphorus application depth on biomass of summer maize Bars superscripted by different letters are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm."

Table 2

Effects of phosphorus application depth on grain yield and its components of summer maize"

年份
Year
处理
Treatment
单位面积穗数
Ears (×104 ear hm-2)
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
籽粒产量
Yield (kg hm-2)
2017 CK 6.37 a 425.40 c 381.39 b 7661.53 d
P5 6.49 a 439.83 b 385.23 ab 8293.59 c
P10 6.42 a 450.31 b 391.15 ab 9277.15 b
P15 6.56 a 476.48 a 397.24 a 10023.14 a
P20 6.55 a 448.70 b 398.06 a 8926.96 b
2018 CK 6.44 a 477.24 b 381.39 b 9438.52 c
P5 6.41 a 476.15 b 385.23 ab 9711.62 c
P10 6.33 a 493.59 b 391.15 ab 11063.84 b
P15 6.56 a 525.54 a 397.24 a 12178.65 a
P20 6.34 a 491.54 b 398.06 a 11021.54 b
变异来源 Source of variation
年份 Year (Y) NS *** *** ***
磷肥施用深度
Phosphorus application depth (P)
NS *** *** ***
年份×磷肥施用深度 Y×P NS NS NS NS

Fig. 3

Effects of phosphorus application depth on root dry weight and root length of summer maize Bars superscripted by different letters are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm."

Fig. 4

Coordination vertical distribution of root dry weight and root length of summer maize in 0-60 cm depths at VT stage in the different fertilization depths (2018) CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm."

Fig. 5

Effects of phosphorus application depth on the proportion of root dry weight and the proportion of root length of summer maize CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm."

Table 3

Accumulation of P in different organs and plant of summer maize (kg hm-2)"

器官
Organ
处理
Treatment
2017 2018
抽雄期 VT 灌浆期 R2 完熟期 R6 抽雄期 VT 灌浆期 R2 完熟期 R6
营养器官
Vegetation organ
CK 41.34 c 47.98 e 36.13 e 46.49 d 54.45 e 43.40 c
P5 51.38 b 56.76 d 40.81 d 59.55 c 67.25 d 51.23 b
P10 58.68 a 75.80 b 49.35 b 62.61 b 72.33 c 51.82 b
P15 60.17 a 83.46 a 51.91 a 69.72 a 82.52 a 57.63 a
P20 57.80 a 73.13 c 45.74 c 63.82 b 76.06 b 53.18 b
籽粒
Grains
CK 3.48 b 51.60 e 6.66 c 78.45 d
P5 5.31 ab 60.35 d 12.90 b 88.14 c
P10 6.26 a 67.54 c 15.79 a 96.32 b
P15 7.36 a 79.81 a 17.97 a 104.06 a
P20 6.58 a 71.46 b 16.09 a 98.00 b
整株
Whole plant
CK 41.34 c 51.46 e 87.73 d 46.49 d 61.10 e 121.85 d
P5 51.38 b 62.07 d 101.16 c 59.55 c 80.14 d 139.37 c
P10 58.68 a 82.05 b 116.99 b 62.61 b 88.12 c 148.14 b
P15 60.17 a 90.82 a 131.72 a 69.72 a 100.49 a 161.69 a
P20 57.80 a 79.71 c 117.09 b 63.82 b 92.14 b 151.18 b

Table 4

Effects of phosphorus application depth on P translocation of summer maize"

处理
Treatment
2017 2018
转运量
Translocation
amount (kg hm-2)
转运率
Translocation
rate (%)
贡献率
Contribution
rate (%)
转运量
Translocation
amount (kg hm-2)
转运率
Translocation rate (%)
贡献率
Contribution
rate (%)
CK 11.85 d 24.66 c 23.96 c 11.05 d 20.30 b 14.08 c
P5 15.95 c 28.11 b 27.31 b 16.02 c 23.77 b 18.22 b
P10 26.45 b 34.90 a 37.83 a 20.51 b 28.36 a 21.30 ab
P15 31.55 a 37.79 a 39.90 a 24.89 a 30.16 a 23.95 a
P20 27.50 b 37.61 a 37.46 a 22.88 ab 30.08 a 23.34 a

Table 5

Effects of phosphorus application depth on P partial productivity and P utilization efficiency of summer maize"

年份
Year
处理
Treatment
磷肥偏生产力
PPFP (kg kg-1)
磷肥表观利用效率
PAUE (%)
磷肥农学利用效率
PAE (kg kg-1)
2017 P5 78.99 c 12.79 c 6.02 c
P10 88.35 b 27.77 b 15.39 b
P15 95.46 a 41.90 a 22.49 a
P20 85.02 b 27.87 b 12.05 b
2018 P5 94.29 c 16.68 c 5.98 c
P10 105.37 b 25.04 b 17.05 b
P15 115.99 a 37.94 a 27.67 a
P20 104.97 b 27.93 b 16.65 b
变异来源 Source of variation
年份 Year (Y) *** NS *
磷肥施用深度Phosphorus application depth (P) *** *** ***
年份×磷肥施用深度 Y×P NS * NS
[1] Wissuwa M . How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol, 2003,133:1947-1958.
[2] Vance C P, Uhdestone C, Allan D L . Phosphorus acquistion and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2010,157:423-447.
[3] Borling K, Barberis E, Otabbong E . Impact of long-term inorganic phosphorus fertilization on accumulation, sorption and release of phosphorus in five Swedish soil profiles. Nutr Cycl Agroecosys, 2004,69:11-21.
[4] 慕韩锋, 王俊, 刘康, 刘文兆, 党延辉, 王兵 . 黄土旱塬长期施磷对土壤磷素空间分布及有效性的影响. 植物营养与肥料学报, 2008,14:424-430.
Mu H F, Wang J, Liu K, Liu Z W, Dang Y H, Wang B . Effect of long-term fertilization on spatial distribution and availability of soil phosphorus in Loess Plateau. Plant Nutr Fert Sci, 2008,14:424-430 (in Chinese with English abstract).
[5] 刘彩亮 . 磷肥高效利用的分析及展望. 磷肥与复肥, 2016,31(7):41-42.
Liu C L . Analysis and prospect of efficient use of phosphate fertilizer. Phosphate & Compound Fert, 2016,31(7):41-42 (in Chinese with English abstract).
[6] Schoumans O F, Bouraoui F, Kabbe C, Oenema O, Van Dijk K C . Phosphorus management in Europe in a changing world. AMBIO, 2015,44(S2):180-192.
[7] Ju X T, Kou C L, Christie P, Dou Z X, Zhang F S . Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ Pollut, 2007,145:497-506.
[8] Gheysari M, Mirlatifi S M, Homaee M, Asadi M E, Hoogenboom G . Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric Water Manage, 2009,96:946-954.
[9] 齐文增, 刘惠惠, 李耕, 邵立杰, 王飞飞, 刘鹏, 董树亭, 张吉旺, 赵斌 . 超高产夏玉米根系时空分布特性. 植物营养与肥料学报, 2012,18:69-76.
Qi W Z, Liu H H, Li G, Shao L J, Wang F F, Liu P, Dong S T, Zhang J W, Zhao B . Temporal and spatial distribution characteristics of super-high-yield summer maize root. Plant Nutr Fert Sci, 2012,18:69-76 (in Chinese with English abstract).
[10] 范秀艳, 杨恒山, 高聚林, 张瑞富, 王志刚, 张玉芹 . 施磷方式对高产春玉米磷素吸收与磷肥利用的影响. 植物营养与肥料学报, 2013,19:312-320.
Fan X Y, Yang H S, Gao J L, Zhang R F, Wang Z G, Zhang Y Q . Effects of phosphorus fertilization methods on phosphorus absorption and utilization of high yield spring maize. Plant Nutr Fert Sci, 2013,19:312-320 (in Chinese with English abstract).
[11] 张永清, 苗果园 . 冬小麦根系对施肥深度的生物学响应研究. 中国生态农业学报, 2006,14(4):72-75.
Zhang Y Q, Miao G Y . Biological response of winter wheat root system to fertilization depth. Chin J Eco-Agric, 2006,14(4):72-75 (in Chinese with English abstract).
[12] Lynch J P, Brown K M . Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil, 2001,237:225-237.
[13] 黄毅, 毕素艳, 邹洪涛, 窦森 . 秸秆深层还田对玉米根系及产量的影响. 玉米科学, 2013,21(5):109-112.
Huang Y, Bi S Y, Zou H T, Dou S . Effect of straw deep returning on corn root system and yield. Maize Sci, 2013,21(5):109-112 (in Chinese with English abstract).
[14] 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香 . 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018,51:1518-1526.
Yang Y M, Sun Y M, Jia L L, Jia S L, Meng C X . Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Sci Agric Sin, 2018,51:1518-1526 (in Chinese with English abstract).
[15] Morris E C, Griffiths M, Golebiowska A, Mairhofer S, Hersey J B, Goh T, Wangenheim D V, Atkinson B, Sturrock C J, Lynch J P, Vissenberg K, Ritz K, Wells D M, Mooney S J, Bennett M J . Shaping 3D root system architecture. Curr Biol, 2017,27:R919-R930.
[16] Lynch J P . Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013,112:347-357.
[17] Mi G H, Chen F J, Wu Q P, Lai N W, Yuan L X, Zhang F S . Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci China Life Sci, 2010,53:1369-1373.
[18] Postma J A, Dathe A, Lynch J P . The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol, 2014,166:590-602.
[19] Lynch J P, Wojciechowski T . Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot, 2015,66:2199-2210.
[20] 范秀艳, 杨恒山, 高聚林, 张瑞富, 王志刚, 张玉芹 . 超高产栽培下磷肥运筹对春玉米根系特性的影响. 植物营养与肥料学报, 2012,18:562-570.
Fan X Y, Yang H S, Gao J L, Zhang R F, Wang Z G, Zhang Y Q . Effects of phosphorus application on root characteristics of super-high-yield spring maize. Plant Nutr Fert Sci, 2012,18:562-570 (in Chinese with English abstract).
[21] 陈梦楠, 孙敏, 高志强, 温斐斐, 郝兴宇, 杨珍平 . 深施磷肥对旱地小麦土壤水分、根系分布及产量的影响. 灌溉排水学报, 2016,35(1):47-52.
Chen M N, Sun M, Gao Z Q, Wen F F, Hao X Y, Yang Z P . Effect of deep application of phosphate fertilizer on soil moisture, root distribution and yield of dryland wheat. J Irrig Drain, 2016,35(1):47-52 (in Chinese with English abstract).
[22] 陈书强, 许海涛, 段翠平 . 施磷量对玉米生长发育及产量构成因子及品质的影响. 河北农业科学, 2011,15(2):62-64.
Chen S Q, Xu H T, Duan C P . Effects of phosphorus application amount on growth and development, yield components and quality of maize. J Hebei Agric Sci, 2011,15(2):62-64 (in Chinese with English abstract).
[23] 边秀芝, 盖嘉慧, 郭金瑞, 阎孝贡, 任军, 赵金宝 . 玉米施磷肥的生物效应. 玉米科学, 2008,16(5):120-122.
Bian X Z, Ge J H, Guo J R, Yan X J, Ren J, Zhao J B . Biological effects of phosphorus fertilizer application on maize. Maize Sci, 2008,16(5):120-122 (in Chinese with English abstract).
[24] 赵靓, 侯振安, 李水仙, 刘立鹏, 黄婷, 张扬 . 磷肥用量对土壤速效磷及玉米产量和养分吸收的影响. 玉米科学, 2014,22(2):123-128.
Zhao L, Hou Z A, Li S X, Liu L P, Huang T, Zhang Y . Effects of P rate on soil available P, yield and nutrient uptake of maize. Maize Sci, 2014,22(2):123-128 (in Chinese with English abstract).
[25] 王鹏, 牟溥, 李云斌 . 植物根系养分捕获塑性与根竞争. 植物生态学报, 2012,36:1184-1196.
Wang P, Mou P, Li Y B . Review of root nutrient foraging plasticity and root competition of plants. Chin J Plant Ecol, 2012,36:1184-1196 (in Chinese with English abstract).
[26] 王空军, 郑洪建, 刘开昌, 张吉旺, 董树亭, 胡昌浩 . 我国玉米品种更替过程中根系时空分布特性的演变. 植物生态学报, 2001,25:472-475.
Wang K J, Zheng H J, Liu K C, Zhang J W, Dong S T, Hu C H . Evolution of maize root distribution in space-time during maize varieties replacing in china. J Plant Ecol, 2001,25:472-475 (in Chinese with English abstract).
[27] 尹宝重, 甄文超, 冯悦 . 海河低平原深松播种对夏玉米根系生理的影响及其节水增产效应. 作物学报, 2015,41:623-632.
Yin B Z, Zhen W C, Feng Y . Effects of subsoiling-seeding on root physiological indices, water-saving and yield-increasing behaviors in summer maize ( Zea mays L.) in Haihe Lowland Plain of China. Acta Agron Sin, 2015,41:623-632 (in Chinese with English abstract).
[28] Maddonni G A, Chelle M, Drouet J L, Andrieu B . Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crops Res, 2001,70:1-13.
[29] 张瑞富, 杨恒山, 范秀艳, 张宏宇, 柳宝林, 刘晶 . 施磷深度和深松对春玉米磷素吸收与利用的影响. 植物营养与肥料学报, 2018,24:880-887.
Zhang R F, Yang H S, Fan X Y, Zhang H Y, Liu B L, Liu J . Effects of phosphorus application depths on its uptake and utilization in spring maize under subsoiling tillage. Plant Nutr Fert Sci, 2018,24:880-887 (in Chinese with English abstract).
[30] 金继运, 何萍, 刘海龙, 李文娟, 黄绍文, 王秀芳 . 氮肥用量对高淀粉玉米和普通玉米吸氮特性及产量和品质的影响. 植物营养与肥料学报, 2004,10:568-573.
Jin J Y, He P, Liu H L, Li W J, Huang S W, Wang X F . Comparison of nitrogen absorption, yield and quality between high-starch and common corn as affected by nitrogen application plant. Plant Nutr Fert Sci, 2004,10:568-573 (in Chinese with English abstract).
[31] 赵营, 同延安, 赵护兵 . 不同供氮水平对夏玉米养分累积、转运及产量的影响. 植物营养与肥料学报, 2006,12:622-627.
Zhao Y, Tong Y A, Zhao H B . Effects of different N rates on nutrients accumulation, transformation and yield of summer maize. Plant Nutr Fert Sci, 2006,12:622-627 (in Chinese with English abstract).
[32] 于晓芳, 高聚林, 叶君, 王志刚, 孙继颖, 胡树平, 苏治军 . 深松及氮肥深施对超高产春玉米根系生长、产量及氮肥利用效率的影响. 玉米科学, 2013,21(1):114-119.
Yu X F, Gao J L, Ye J, Wang Z J, Sun J Y, Hu S P, Su Z J . Effects of deep loosening with nitrogen deep application on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize. Maize Sci, 2013,21(1):114-119 (in Chinese with English abstract).
[33] 赵伟, 宋春, 周攀, 王嘉雨, 徐锋, 叶芳, 王小春, 杨文钰 . 施磷量与施磷深度对玉米-大豆套作系统磷素利用率及磷流失风险的影响. 应用生态学报, 2018,29:1205-1214.
Zhao W, Song C, Zhou P, Wang J Y, Xu F, Ye F, Wang X C, Yang W Y . Effects of phosphorus application rates and depths on P utilization and loss risk in a maize-soybean intercropping system. Chin J Appl Ecol, 2018,29:1205-1214 (in Chinese with English abstract).
[34] 赵亚丽, 杨春收, 王群, 刘天学, 李潮海 . 磷肥施用深度对夏玉米产量和养分吸收的影响. 中国农业科学, 2010,43:4805-4813.
Zhao Y L, Yang C S, Wang Q, Liu T X, Li C H . Effects of phosphorus application depth on yield and nutrient uptake of summer maize. Sci Agric Sin, 2010,43:4805-4813 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[9] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[10] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[11] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!