Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (05): 830-837.doi: 10.3724/SP.J.1006.2014.00830

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Contribution of Wheat Variey Ningmai 9 to Its  Derivates

JIANG Peng,CHEN Xiao-Lin,ZHANG Ping-Ping,ZHANG Peng,YAO Jin-Bao,MA Hong-Xiang*   

  1. Jiangsu Provincial Key Laboratory of Agrobiology / Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2013-08-26 Revised:2014-01-12 Online:2014-05-12 Published:2014-02-14
  • Contact: 马鸿翔, E-mail: hxma@jaas.ac.cn

Abstract:

Ningmai 9 is a soft wheat cultivar with high yield, wide adaption, and resistance to multiple diseases including Fusarium head blight, yellow mosaic virus, powdery mildew, and sharp eye spots, which serves as a backbone parent in the southern Huaihe River valley. This study aimed to disclose the genetic contribution of Ningmai 9 to its derivates using SSR markers. A total of 471 alleles were detected on 170 SSR loci, with 1–6 alleles per locus and an average of 2.8. The UPGMA cluster analysis showed that Yangmai 18 and Ningmai 9 were clustered together firstly with the smallest genetic disrtance, and Yangfumai 4 and Ningmai 9 were clustered together with the largest genetic distance. Genetic similarity coefficient showed that more than a half of loci transferred from Ningmai 9 to its derived varieties. The percentage of alleles shared between Ningmai 9 and its derived varieties differed greatly among 21 chromosomes, but the average percentage was similar among A, B, and D genomes. Ten markers had the same amplification banding pattern in Ningmai 9 and nine derived varieties, and nine of them were linked to the QTLs or genes associated with important agronomic traits as previous reports. In comparison of genetic background between Ningmai 9 and Ningmai 13 (a direct selection line from Ningmai 9), the genetic similarity coefficient was 0.732, suggesting that the genetic back ground of Ningmai 13 is similar to that of Ningmai 9. Genotyping data showed that the markers associated with protein content and resistance to Fusarium head blight in Ningmai 13 were in correspondence with those in Ningmai 9. These results may partially explain the reason for elite agronomic traits of Ningmai 13 similar to Ningmai9m, such as resistance to Fusarium head blight and soft wheat quality.

Key words: Ningmai 9, Ningmai 13, SSR, Clustering analysis, Genetic contribution

[1]姚金保, 马鸿翔, 张平平, 姚国才, 杨学明, 任丽娟, 张鹏, 周淼平. 小麦优良亲本宁麦9号的研究与利用. 核农学报, 2012, 26: 17–21



Yao J B, Ma H X,Zhang P P, Yao G C, Yang X M, Ren L J, Zhang P, Zhou M P. Research of wheat elite parent Ningmai 9 and its utilization. Acta Agric Nucl Sin, 2012, 26: 17–21 (in Chinese with English abstract)



[2]You G X, Zhang X Y, Wang L F. An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: Information from 96 random accessions with maximized genetic diversity. Mol Breed, 2005, 14: 397–406



[3]王兰芬, Balfourier F, 郝晨阳, Exbrayat F, 董玉琛, 盖红梅, 张学勇. 欧洲与东亚小麦品种遗传多样性的比较分析. 中国农业科学, 2007, 40: 2667–2678



Wang L F, Balfourier F, Hao C Y, Exbrayat F, Dong Y C, Ge H M, Zhang X Y. Comparison of genetic diversity level between European and East-Asian wheat collections using SSR markers. Sci Agric Sin, 2007, 40: 2667–2678 (in Chinese with English abstract)



[4]李玮瑜, 张斌, 张嘉楠, 昌小平, 李润植, 景蕊莲. 利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异. 作物学报, 2012, 38: 962–970



Li W Y, Zhang B, Zhang J N, Chang X P, Li R Z, Jing R L. Exploring elite alleles for chlorophyll content of flag leaf in natural population of wheat by association analysis. Acta Agron Sin, 2012, 38: 962–970 (in Chinese with English abstract)



[5]Hao C Y, Wang L F, Ge H M, Dong Y C, Zhang X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PloS ONE, 2011, e6(2): e17279. DOI: 10.1371/journal.pone.0017279



[6]Hao C Y, Dong Y C, Wang L F, You G X, Zhang H N, Ge H M, Jia J Z, Zhang X Y. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chin Sci Bull, 2008, 53: 1518–1526



[7]孙慧敏, 张军, 赵团结, 盖钧镒. 亚洲地区中、外大豆品种幼苗期耐淹性与SSR标记的关联分析. 作物学报, 2010, 36: 1615–1623



Sun H M, Zhang J, Zhao T J, Gai J Y. Association analysis between submergence tolerance and SSR markers in domestic and foreign soybean cultivars in Asia. Acta Agron Sin, 2010, 36: 1615–1623 (in Chinese with English abstract)



[8]韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395–1404



Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009, 35: 1395–1404 (in Chinese with English abstract)



[9]盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇. 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38: 954–961



Ge H M, Li Y G, Wang R Y, Li Z Q, Wang S J, Gao J L, Zhang X Y. Genetic contribution of Lumai 14 to novel wheat varieties developed in Shandong Province. Acta Agron Sin, 2012, 38: 954–961 (in Chinese with English abstract)



[10]徐鑫, 李小军, 李秀全, 杨欣明, 刘伟华, 高爱农, 李立会. 小麦骨干亲本"洛夫林10号"1BL/1RS在衍生品种中的遗传分析. 麦类作物学报, 2010, 30: 221–226



Xu X, Li X J, Li X Q, Yang X M, Liu W H, Gao A N, Li L H. Inheritance of 1BL/1RS of founder parent Lovrin 10 in its progeny. J Triticeae Crops, 2010, 30: 221–226 (in Chinese with English abstract)



[11]刘新伦, 司清林, 李琴琴, 王长有, 王亚娟, 张宏, 吉万全. 利用SSR标记分析小麦骨干亲本阿夫及衍生品种(系)的遗传多样性和变化趋势. 农业生物技术学报, 2012, 20: 983–995



Liu X L, Si Q L, Li Q Q, Wang C Y, Wang Y J, Zhang H, Ji W Q. SSR analysis of genetic diversity and temporal trends of the core wheat (Triticum aestivum L.) parent Funo and its derivative varieties (lines). J Agric Biotech, 2012, 20: 983–995 (in Chinese with English abstract)



[12]袁园园, 王庆专, 崔法, 张景涛, 杜斌, 王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递. 作物学报, 2010, 36: 9–16



Yuan Y Y, Wang Q Z, Cui F, Zhang J T, Du B, Wang H G. Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin, 2010, 36: 9–16 (in Chinese with English abstract)



[13]Andersen J R, Lubberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554–560



[14]Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114



[15]庄巧生. 中国小麦品种改良及其系谱分析. 北京: 中国农业出版社, 2003. pp 10–13



Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 10–13 (in Chinese)



[16]姚金保, 姚国才, 杨学明, 马鸿翔, 张平平. 小麦收获指数遗传及其与农艺性状的相关分析. 江苏农业学报, 2008, 24: 5–10



Yao J B, Yao G C, Yang X M, Ma H X, Zhang P P. Inheritance of wheat harvest index and its correlations with agronomic traits. Jiangsu J Agric Sci, 2008, 24: 5–10 (in Chinese with English abstract)



[17]姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦产量构成因素的双列杂交分析. 核农学报, 2011, 25: 633–638



Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Diallel analysis for yield components of wheat. Acta Agric Nucl Sin, 2011, 25: 633–638 (in Chinese with English abstract)



[18]姚金保, 张平平, 任丽娟, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 软质冬小麦品种籽粒蛋白质含量的遗传分析. 江苏农业学报, 2011, 27: 469–474



Yao J B, Zhang P P, Ren L J, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Inheritance of grain protein content in soft red wheat cultivars. Jiangsu J Agric Sci, 2011, 27: 469–474 (in Chinese with English abstract)



[19]张平平, 姚金保, 马鸿翔. 小麦溶剂保持力的遗传分析. 江苏农业学报, 2010, 26: 1170–1175



Zhang P P, Yao J B, Ma H X. Genetic analysis of solvent retention capacity in wheat. Jiangsu J Agric Sci, 2010, 26: 1170–1175 (in Chinese with English abstract)



[20]姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦赤霉病的抗性遗传分析. 麦类作物学报, 2011, 31: 370–375



Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Genetic analysis of resistance to Fusarium head blight in wheat. J Triticeae Crops, 2011, 31: 370–375 (in Chinese with English abstract)



[21]周延清. DNA分子标记技术在植物研究中的应用. 北京: 化学工业出版社, 2005. pp 174–178



Zhou Y Q. Application of DNA Markers in Plant Research. Beijing: Chemical Industry Press, 2005. pp 174–178 (in Chinese)



[22]Liu S, Pumphrey M O, Gill B S, Trick H N, Zhang J X, Doleze J, Chalhoub B, Anderson J A. Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun, 2008, 36(suppl-B): 195–201



[23]张平平, 马庆, 钱存鸣, 马鸿翔. 宁麦13选系的遗传多样性及品质差异. 作物学报, 2008, 34: 1484–1488



Zhang P P, Ma Q, Qian C M, Ma H X. Genetic diversity and quality difference of systemic selective lines in Ningmai 13. Acta Agron Sin, 2008, 34: 1484–1488 (in Chinese with English abstract) 



[24]徐冠仁. 核农学导论. 北京:原子能出版社, 1997. pp 104–106



Xu G R. Introduction of Nuclear Agricultural Science. Atomic Energy Press, 1997. pp 104–106 (in Chinese)



[25]Roy J K, Bandopadhyay R, Rustgi S, Balyan H S, Gupta P K. Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Curr Sci India, 2006, 90: 683–689



[26]Yao J, Wang L X, Liu L H, Zhao C P, Zheng Y L. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica, 2009, 137: 67–75



[27]周晓果, 景蕊莲, 郝转芳, 昌小平, 张正斌. 小麦幼苗根系性状的QTL分析. 中国农业科学, 2005, 38: 1951–1957



Zhou X G, Jing R L, Hao C F, Chang X P, Zhang Z B. Mapping QTL for seedling root traits in common wheat. Sci Agric Sin, 2005, 38: 1951–1957 (in Chinese with English abstract)



[28]Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111: 423–430



[29]Li Y, Song Y, Zhou R, Branlard G, Jia J. Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breed, 2009, 128: 235–243



[30]Annapurnalilly B, Balgounda H, Mohinder P, Subhash B, Suryaprakasa R, Shubhada T. Validation and identification of molecular markers linked to the leaf rust resistance gene Lr28 in wheat. J Appl Genet, 2011, 52: 171–175



[31]Yang Z, Gilbert J, Fedak G, Somers D J. Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome, 2005, 48: 187–196



[32]景蕊莲, 昌小平, 贾继增. 一个小麦不孕小穗数QTL的染色体7A的作图区间Xgwm260-WMC83-WMC301. 中国专利号, CN200310115364.6. 2005-05-25



Jing R L, Chang X P, Jia J Z. Mapping interval Xgwm260-WMC83-WMC301 harboring a QTL for sterile spikelet number on chromosome 7A of wheat: China’s Patent No. CN200310115364.6. 2005-05-25 (in Chinese)



[33]Clarke F R, Knox R E, Clarke J M, Pozniak C J. Quantitative Trait Loci for agronomic, pest resistance and end-use quality traits in a durum wheat doubled haploid population. In: Molina-Cano J L, Christou P, Graner A, Hammer K, Jouve N, Keller B, Lasa J M, Powell W, Royo C, Shewry P, Stanca A M, eds. Cereal Science and Technology for Feeding Ten Billion People: Genomics Era and Beyond. Zaragoza: CIHEAM/IRTA, 2008. pp 111–113



[34]Jaiswal V, Mir R R, Mohan A, Balyan H S, Gupta P K. Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica, 2012, 188: 89–102



[35]Lin F, Xue S L, Zhang Z Z, Zhang C Q, Kong Z X, Yao G Q, Tian D G, Zhu H L, Li CJ, Cao Y, Wei J B, Luo Q Y, Ma Z Q. Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419×Wangshuibai population: II: Type I resistance. Theor Appl Genet, 2006, 112: 528–535



[36]Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032–1040



[37]Prasad M, Kumar N, Kulwal P, Röder M, Balyan H, Dhaliwal H, Gupta P. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003, 106: 659–667



[38]张小村, 李斯深, 赵新华, 范玉顶, 李瑞军. 小麦纹枯病抗性的QTL分析和抗病基因的分子标记, 植物遗传资源学报, 2005, 6: 276–279



Zhang X C, Li S S, Zhao X H, Fan Y D, Li R J. QTL and molecular markers for resistance gene of wheat sharp eyespot. J Plant Genet Res, 2005, 6: 276–279 (in Chinese with English abstract)

[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[5] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[6] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[7] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[8] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[9] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[10] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[11] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[12] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[13] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[14] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[15] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!