Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (07): 1190-1196.doi: 10.3724/SP.J.1006.2014.01190
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Yun-Peng1,2,MA Jing-Yong1,MA Rui1,MA Jian 1,*,LIU Wen-Guo1,2,*
[1]Bhatti K H, Parveen T, Farooq, A, Nawaz, K, Hussain K, Siddiqui E H. A Critical Review on Herbicide Resistance in Plants. World Appl Sci J, 2013, 27: 1027–1036[2]Simmons W J. Bowman v. Monsanto and the protection of patented replicative biologic technologies. Nat Biotechnol, 2013, 31: 602–606[3]Duke S O, Powles S B. Glyphosate: a once–in–a–century herbicide. Pest Manag Sci, 2008, 64: 319–325[4]Shaw D R, Owen M D K, Dixon P M, Weller S C, Young B G, Wilson R G, Jordan D L. Benchmark study on glyphosate–resistant cropping systems in the United States. Part 1: Introduction to 2006–2008. Pest Manag Sci, 2011, 67: 741–746[5]Owen M D K, Young B G, Shaw D R, Wilson R G, Jordan D L, Dixon P M, Weller S C. Benchmark study on glyphosate–resistant crop systems in the United States. Part 2: Perspectives. Pest Manag Sci, 2011, 67: 747–757[6]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995, 59: 143–169[7]Torsvik V, Øvreås L. Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol, 2002, 5: 240–245[8]Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev, 2004, 68: 669–685[9]Zhang X, Li H, Li C J, Ma T, Li G, Liu Y H. Metagenomic approach for the isolation of a thermostable beta-galactosidase with high tolerance of galactose and glucose from soil samples of Turpan Basin. BMC Microbiol, 2013, 13(1): 237[10]Culligan E P, Sleator R D, Marchesi J R, Hill C. Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME J, 2012, 6: 1916–1925[11]赵裕栋, 周俊, 何璟. 土壤微生物总DNA提取方法的优化. 微生物学报, 2012, 52: 1143–1150Zhao Y D, Zhou B, He J. Optimization of soil microbial DNA isolation. Acta Microbiol Sin, 2012, 52: 1143–1150 (in Chinese with English abstract)[12]Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H. Early infection of scutellum tissue with Agrobacterium allows high–speed transformation of rice. Plant J, 2006, 47: 969–976[13]Kishore G M, Shah D M. Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase: U.S. Patent 4971908. 1990-11-20[14]Barry G F, Kishore G M, Padgette S R, Stallings W C. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases: U.S. Patent 5633435. 1997-5-27[15]Barry G F, Kishore G M, Padgette S R, Stallings W C. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases: U.S. Patent 5627061. 1997-5-6[16]Barry G F, Kishore G M, Padgette S R, Stallings W C. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases: U.S. Patent 5804425. 1998-9-8.[17]Funke T, Han H, Healy–Fried M L, Fischer M, Schönbrunn E. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci, 2006, 103: 13010–13015[18]Benbrook C M. Impacts of genetically engineered crops on pesticide use in the US––the first sixteen years. Environ Sci Eur, 2012, 24: 1–13[19]James C. A global overview of biotech (GM) crops. Landes Bioscience, Austin, America, GM Crops, 2010, 1: 1–8[20]赵海铭, 宋伟彬, 赖锦盛. 高粱 5-烯醇式丙酮酰莽草酸-3-磷酸合酶基因 (EPSPS)叶绿体转运肽(CTP)的克隆及其在转基因玉米中的功能验证. 农业生物技术学报, 2013, 21: 1009–1018Zhao H M, Song W B, Lai J S. Cloning of sorghum bicolor chloroplast transit peptide (CTP) of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and its functional validation in transgenic maize (Zea mays). J Agric Biotechnol, 2013, 21: 1009–1018 (in Chinese with English abstract)[21]Daniell H, Datta R, Varma S, Gray S, Lee S B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol, 1998, 16: 345–348 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[15] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
|