Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (04): 651-657.doi: 10.3724/SP.J.1006.2015.00651

• RESEARCH NOTES • Previous Articles     Next Articles

Molecular Identification of Leaf Rust Resistance Gene in Wheat Line 5R625

QIN Jin-Yan1,LI Zai-Feng2,YAN Xiao-Cui1,SU Ji-Hua1,YAO Zhan-Jun1,*,LIU Da-Qun2,*   

  1. 1 College of Agronomy, Agricultural University of Hebei / North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding 071001, China; 2 College of Plant Protection, Agricultural University of Hebei / Biological Control Center for Plant Disease Pests of Hebei Province, Baoding 071001, China
  • Received:2014-09-22 Revised:2015-02-06 Online:2015-04-12 Published:2015-03-03
  • Contact: 姚占军, E-mail: yzhj201@163.com; 刘大群, E-mail: ldq@hebau.cn E-mail:qinjya@163.com

Abstract:

Wheat line 5R625 shows high resistance to all of Puccinia triticinapathotypes at seedling and adult plant stages, but its resistance mechanism is unclear. In this study, the resistance gene(s) were postulated by artificially inoculating 15 P. triticinapathotypes at the seedling stage and comparing infection types with those of 36 wheat lines with known Lr genes. The result showed that 5R625 might carry Lr9, Lr19, Lr24, Lr28, Lr39, Lr47, Lr51,and Lr53. Further genetic analysis to confirm the resistance gene(s) was carried out using the populations of Fl, F2, and F2:3 derived from the cross between 5R625 and Zhengzhou 5389 (susceptible control). A single dominant gene was found responsible for the resistance at seedling and adult plant stages. This gene was mapped on 3DL chromosome with molecular markers using the F2:3 lines. The linkage map contained five closely linked markers, including STS marker 24-16 and SCAR marker OP-J09 that have proved to be cosegregated with Lr24. Therefore, the leaf rust resistance gene in 5R625is most likely Lr24.

Key words: Wheat, Leaf rust resistance gene, Lr24, SSR markers, Molecular mapping

[1]Khan M, Bukhari A, Dar Z, Rizvi S. Status and strategies in breeding for rust resistance in wheat. Agric Sci, 2013, 4: 292–301



[2]Zhao X L, Zheng T C, Xia X C, He Z H, Liu D Q, Yang W X, Yin G H, Li Z F. Molecular mapping of leaf rust resistance gene LrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2008, 117: 1069–1075



[3]Zhou H X, Xia X C, He Z H, Li X, Wang C F, Li Z F, Liu D Q. Molecular mapping of leaf rust resistance gene LrNJ97 in Chinese wheat line Neijiang 977671. Theor Appl Genet, 2013, 126: 2141–2147



[4]Biiffen R H. Mendel's law of inheritance and wheat breeding. Agric Sci, 1905, 1: 4–48



[5]Mains E B, Jackson H S. Two strains of Puccinia triticina on wheat in the United States. Phytopathology, 1921, 11: 40–45



[6]Ausemus E R, Harrington J B, Reitz L P, Worzella W W. A summary of genetic studies in hexaploid and tetraploid wheats. J Am Soc Agron, 1946, 38: 1082–1099



[7]McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. Catalogue of Gene Symbols for Wheat: 2013 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneCatalogueIntroduction.pdf



[8]陈万权, 秦庆明, 陈扬林, 吴支行, 马志强, 廖琴. 我国40个小麦品种抗叶锈性研究. 植物病理学报, 2001, 31: 16–25



Chen W Q, Qin Q M, Chen Y L, Wu Z H, Ma Z Q, Liao Q. Leaf rust resistance of 40 wheat cultivars in China. Acta Phytopathol Sin, 2001, 31: 16–25 (in Chinese with English abstract)



[9]刘志勇, 王晓玲, 倪中福, 杨爱冬, 孙其信, 杨作民. 小麦抗叶锈基因Lr9、Lr24的分子标记辅助选择研究, 农业生物技术学报, 2000, 8: 14–16



Liu Z Y, Wang X L, Ni Z F, Yang A D, Sun Q X, Yang Z M. Molecular marker assisted selection (MAS) of leaf rust (Puccinia recondita f. sp. tritici) resistance genes Lr9, Lr24 in wheat. J Agric Biotechnol, 2000, 8: 14–16 (in Chinese with English abstract)



[10]张庆, 刘太国, 张敏, 陈万权. 小麦抗源Sw92抗叶锈病基因遗传及其分子标记. 植物保护学报, 2007, 34: 515–518



Zhang Q, Liu T G, Zhang M, Chen W Q. Genetics and SSR markers of gene for leaf rust resistance in winter wheat line Sw92. Acta Phytophyl Sin, 2007, 34: 515–518 (in Chinese with English abstract)



[11]Li Z F, Xia X C, He Z H, Li X, Zhang L J, Wang H Y, Meng Q F, Yang W X, Li G Q, Liu D Q. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Dis, 2010, 94: 45–53



[12]潘阳, 聂迎彬, 穆培源, 姚占军, 李星, 周悦, 李在峰, 刘大群. 新疆的小麦品种(系)苗期和成株期抗叶锈性鉴定. 植物遗传资源学报, 2011, 12: 203–210



Pan Y, Nie Y B, Mu P Y, Yao Z J, Li X, Zhou Y, Li Z F, Liu D Q. Seedling and slow rusting resistance to leaf rust of wheat cultivars in Xinjiang province. J Plant Genet Resour, 2011, 12: 203–210 (in Chinese with English abstract)



[13]韩烨, 何中虎, 夏先春, 李星, 李在峰, 刘大群. CIMMYT小麦材料的苗期和成株抗叶锈病鉴定. 作物学报, 2011, 37: 1125–1133



Han Y, He Z H, Xia X C, Li X, Li Z F, Liu D Q. Seedling and slow rusting resistance to leaf rust in CIMMYT wheat lines. Acta Agron Sin, 2011, 37: 1125–1133 (in Chinese with English abstract)



[14]周悦, 吴娱, 李星, 李在峰, 刘大群. 两个中国小麦品种中抗叶锈基因的遗传分析和基因定位. 中国农业科学, 2012, 45: 3273–3280



Zhou Y, Wu Y, Li X, Li Z F, Liu D Q. Genetic analysis and molecular mapping of leaf rust resistance genes in two Chinese wheat lines. Sci Agric Sin, 2012, 45: 2373–2380 (in Chinese with English abstract)



[15]周悦, 李在峰, 李星, 王龙, 张晔, 刘大群. 小麦品系天95HF2抗叶锈基因定位. 作物学报, 2010, 36: 1265–1269



Zhou Y, Li Z F, Li X, Wang L, Zhang Y, Liu D Q. Molecular mapping of leaf rust resistance genes in wheat line Tian 95HF2. Acta Agron Sin, 2010, 36: 1265–1269 (in Chinese with English abstract)



[16]李星, 李在峰, 李亚宁, 赵志泉, 刘大群, 王翠芬, 高丽娇, 孙道杰. 小麦品系西农1163-4抗叶锈病基因的遗传分析和分子作图. 中国农业科学, 2010, 43: 2397–2402



Li X, Li Z F, Li Y N, Zhao Z Q, Liu D Q, Wang C F, Gao L J, Sun D J. Genetic analysis and molecular mapping of leaf rust resistance gene in wheat line Xinong 1163-4. Sci Agric Sin, 2010, 43: 2397–2402 (in Chinese with English abstract)



[17]陈现朝, 李星, 李在峰, 张海, 陈欢, 高敏, 刘大群. 中国小麦贵州98-18中抗叶锈基因的分子定位. 植物病理学报, 2010, 40: 489–494



Chen X C, Li X, Li Z F, Zhang H, Chen H, Gao M, Liu D Q. Molecular mapping of leaf rust resistance gene LrG98 in Chinese wheat line Guizhou 98-18. Acta Phytopathol Sin, 2010, 40: 489–494 (in Chinese with English abstract)



[18]Zhang H, Xia X C, He Z H, Li X, Li Z F, Liu D Q. Molecular mapping of leaf rust resistance gene LrBi16 in Chinese wheat cultivar Bimai 16. Mol Breed, 2011, 28: 527–534



[19]Xing L F, Wang C F, Xia X C, He Z H, Chen W Q, Liu T G, Li Z F, Liu D Q. Molecular mapping of leaf rust resistance gene LrFun in Romanian wheat line Fundulea 900. Mol Breed, 2014, 33: 931–937



[20]Long D L, Kolmer J A. A North American system of nomenclature for Puccinia triticina. Phytopathology, 1989, 79: 525–529



[21]Roelfs A P, Singh R P, Saari E E. Resistance to Leaf and Stem Rusts of Wheat: Concepts and Methods of Disease Management. CIMMYT, Mexico D F, 1992



[22]Dubin H J, Johnson R, Stubbs R W. Postulated genes for resistance to strip rust in selected CIMMYT and related wheats. Plant Dis, 1989, 73: 472–475



[23]Sharp P J, Kreis M, Shewry P R, Gale M D. Location of β-amylase sequence in wheat and its relatives. Theor Appl Genet, 1988, 75: 286–290



[24]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[25]张娜, 陈玉婷, 李亚宁, 张立荣, 孟庆芳, 张汀, 杨文香, 刘大群. 小麦抗叶锈病基因Lr24的一个新STS标记. 作物学报, 2008, 34: 212–216



Zhang N, Chen Y T, Li Y N, Zhang L R, Meng Q F, Zhang T, Yang W X, Liu D Q. A novel STS marker for leaf rust resistance gene Lr24 in wheat. Acta Agron Sin, 2008, 34: 212–216 (in Chinese with English abstract)



[26]刘仁虎, 孟金陵. MapDraw, 在Excel中绘制遗传连锁图的宏. 遗传, 2003, 25: 317–321



Liu R H, Meng J L. MapDraw: A Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (Beijing), 2003, 25: 317–321 (in Chinese with English abstract)



[27]陈万权, 秦庆明, 国际上已知小麦抗叶锈病基因在中国的可利用性研究. 中国农业科学, 2002, 35: 794–801



Chen W Q, Qin Q M. Studies on utilization of worldwide known genes for leaf rust resistance of wheat in China. Sci Agric Sin, 2002, 35: 794–801 (in Chinese with English abstract)



[28]陈万权, 秦庆明, 陈扬林, 晏思白. 1992-1996 年我国小麦叶锈菌毒性动态. 植物病理学报, 1998, 28: 101–106



Chen W Q, Qin Q M, Chen Y L, Yan S B. Virulence dynamics of Puccinia recondite f. sp. tritici in China during 1992-1996. Acta Phytopathol Sin, 1998, 28: 101–106 (in Chinese with English abstract)



[29]Sun X C, Bai G H, Carver B F, Bowden R. Molecular mapping of wheat leaf rust resistance gene Lr42. Crop Sci, 2010, 50: 59–66



[30]Friebe B, Jiang J, Raupp W J, McIntosh R A, Gill B S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91: 59–87



[31]张娜, 冀红柳, 杨文香, 刘大群. 小麦抗叶锈病基因Lr24的TRAP分析. 中国农业科学, 2009, 42: 1841–1848



Zhang N, Ji H L, Yang W X, Liu D Q. Studies on gene.Lr24 conferring resistance to wheat leaf rust by TRAP analysis. Sci Agric Sin, 2009, 42: 1841–1848 (in Chinese with English abstract)



[32]Schachermary G, Messmer M M, Feuillet C, Winzeller H, Winzeler M, Keller B. Identification of molecular markers linked to the Agropyro elongatum derived leaf  resistance gene Lr24 in wheat. Theor Appl Genet, 1995, 90: 982–990



[33]Dedryver F, Jubier M F, Thouvenin J, Goyeau H. Molecular markers linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome, 1996, 39: 830–835



[34]Mago R, Bariana H S, Dundas I S, Spielmeyer W, Lawrence G J, Pryor A J, Ellis J G. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet, 2005, 111: 496–504

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!