Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 929-937.doi: 10.3724/SP.J.1006.2015.00929

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Autumn Straw Mulching on Physiological Characteristics and Water Use Efficiency in Winter Wheat Grown in Hilly Drought Region

WU Xiao-Li,TANG Yong-Lu*,LI Chao-Su,WU Chun,HUANG Gang   

  1. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
  • Received:2014-08-13 Revised:2015-04-02 Online:2015-06-12 Published:2015-04-17
  • Contact: 汤永禄, E-mail: ttyycc88@163.com, Tel: 028-84504605 E-mail:wuxiaolicjq@126.com

Abstract:

Seasonal drought during winter and spring often occurs in southwest hilly area of China, which severely influences seedling standing and yield in winter wheat. In this study, we conducted a two-year field experiment in Jianyang, Sichuan province in the 2012–2013 (dry) and 2013–2014 (wet) growing seasons to explore the effects of straw mulching on physiological characteristics, water use efficiency (WUE), and grain yield of winter wheat. Four treatments were designed, namely non-mulching (CK), non-mulching plus two irrigations after sowing and at jointing stage (T1), straw mulching before sowing (T2), and straw mulching before sowing and during wheat growth (T3). In the dry year (2012–2013), the yields of T1, T2, and T3 were 4151, 3926, and 3603 kg ha-1, which were 41.96%, 34.25%, and 23.22% higher than those of CK, respectively, and the WUEs of T1, T2, and T3 increased by 27.23%, 29.59%, and 18.84%, respectively. However, in the wet year (2013–2014), the yield variation among treatments was slight. In the dry year, irrigation or straw mulching showed the effects on enhancing dry matter accumulation from sowing to anthesis and inhibiting SPAD attenuation of flag leaf and penultimate leaf after anthesis and straw mulching increased soil moisture content in pre-sowing and whole growing period. Compared with CK, T2 significantly increased root dry matter, root-to-shoot ratio, root length density, root dry matter density, and root surface area density in some critical growth stages, and highly enhanced root system in deep soil. According to correlation analysis, grain yield was positively correlated with dry matter accumulations in the periods of sowing–tillering, tillering–jointing, jointing–anthesis, and anthesis–maturity, SPAD values of flag and penultimate leaf after anthesis, and WUE. These results indicate that straw mulch before wheat sowing can maintain soil moisture, delay leaf senescence and increase grain yield in winter wheat.

Key words: Straw mulching, Yield, Water use efficiency, Root, SPAD, Dry matter accumulation

[1]赵燮京, 吴萧. 川中丘陵区小麦不同覆盖栽培条件下土壤水分及增产效果研究. 干旱地区农业研究, 2003, 21(2): 75–79

Zhao X J, Wu X. The study of soil water and wheat production under different covering methods in the hilly areas of central Sichuan. Agric Res Arid Areas, 2003, 21(2):75–79 (in Chinese with English abstract)

[2]刘定辉, 庞良玉, 陈尚洪, 舒丽, 张玉兰. 覆盖与底墒对丘陵旱地小麦产量与水分利用的影响. 西南农业学报, 2010, 23: 641–643

Liu D H, Pang L Y, Chen S H, Shu L, Zhang Y L. Effects of different mulching material and irrigation on wheat yield and water use efficiency in dry land in hilly area of Sichuan Basin. Southwest Chin J Agric Sci, 2010, 23: 641–643 (in Chinese with English abstract)

[3]汤永禄, 李朝苏, 吴春, 吴晓丽, 黄钢. 播种方式对丘陵旱地套作小麦立苗质量、产量及效益的影响. 中国农业科学, 2013, 46: 5089–5097

Tang Y L, Li C S, Wu C, Wu X L, Huang G, Ma X L. Effects of sowing patterns on establishment quality, grain yield and production benefit of intercropping wheat in hilly countries. Sci Agric Sin, 2013, 46: 5089–5097 (in Chinese with English abstract)

[4]Tang Y L, Wu X L, Li C S, Wu C, Ma X, Huang G. Long-term effect of year-round tillage patterns on yield and grain quality of wheat. Plant Prod Sci, 2013, 16: 365–373

[5]Kong L G. Maize residues, soil quality, and wheat growth in China. A review. Agron Sustain Dev, 2014, 34: 405–416

[6]Humberto, B C. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res, 2007, 95: 240–254

[7]Huang Y L, Chen L D, Fu B J, Huang Z L, Gong J. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects. Agric Water Manag, 2005, 72: 209–222

[8]Govaerts B, Sayre K D, Deckers J. Stable high yields with zero tillage and permanent bed planting? Field Crops Res, 2005, 94: 33–42

[9]朱玉芹, 岳玉兰. 玉米秸秆还田培肥地力研究综述. 玉米科学, 2004, 12(3): 106–108

Zhu Y Q, Yue Y L. Research progress maize straw mulching for enriching the soil fertility. J Maize Sci, 2004, 12(3): 106–108 (in Chinese)

[10]赵鹏, 陈阜. 豫北秸秆还田配施氮肥对冬小麦氮利用及土壤硝态氮的短期效应. 中国农业大学学报, 2008, 13(4): 19–23

Zhao P, Chen F. Short-term influences of straw and nitrogen cooperation on nitrogen use and soil nitrate content in North Henan. J Chin Agric Univ, 2008, 13(4): 19–23 (in Chinese with English abstract)

[11]Sasal M C, Andriulo A E, Aboada M A. Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian pampas. Soil Tillage Res, 2005, 87: 9–18

[12]蒋向, 任洪志, 贺德先. 玉米秸秆还田对土壤理化性状与小麦生长发育和产量的影响研究进展. 麦类作物学报, 2011, 31: 569–574

Jiang X, Ren H Z, He D X. Research progress on effects of returning maize straws in to soil on soil physical & chemical characters and on development and yield of wheat as succeeding crop. J Triticeae Crops, 2011, 31: 569–574 (in Chinese with English abstract)

[13]高茂盛, 廖允成, 尹振燕, 于稀水, 吴清丽. 麦秸还田对隔茬冬小麦根系及叶片衰老的影响. 西北植物学报, 2007, 27 : 303–308

Gao M S, Liao Y X, Yin Z Y, Yu X S, Wu Q L. Effects of returning straw into field on next year winter wheat root system development and leaf senescence. Acta Bot Boreali-Occident Sin, 2007, 27: 303–308 (in Chinese with English abstract)

[14]刘义国, 林琪, 房清龙. 旱地秸秆还田对小麦花后光合特性及产量的影响. 华北农学报, 2013, 28(4):110–114

Liu Y G, Lin Q, Fang Q L. Effects of dryland with straw return on photosynthetic characteristics and yield of wheat after flowering stage. Acta Agric Boreali-Sin, 2013, 28(4): 110–114 (in Chinese with English abstract)

[15]郑伟, 张静, 刘阳, 温晓霞, 廖允成, 高茂盛. 低施肥条件下秸秆还田对冬小麦旗叶衰老的影响. 生态学报, 2009, 29: 4967–4974

Zhen W, Zhang J, Liu Y, Wen X X, Liao Y C, Gao M S. Physiological effects of ploughing corn straw under soil on flag-leaf resistance of winter wheat under lowly applying fertilizer condition. Acta Eco Sin, 2009, 29: 4967–4974 (in Chinese with English abstract)

[16]Jun Y S, Tong Y P, Liu Q Y, Li B, Jing R L, Li J Y, Li Z S. Mapping quantitative trait loci for post-anthesis dry matter accumulation in wheat. J Integr Plant Biol, 2006, 48: 938–944

[17]Wang X B, Cai D X, Perdok U D, Hoogmoed W B, Oenema O. Development in conservation tillage in rainfed regions of North China. Soil Tillage Res, 2007, 93: 239–250

[18]Wang X B, Wu H J, Kuai D, Zhang D C, Feng Z H, Zhao Q S, Wu X P, Jin K, Cai D X, Oenema O, Hoogmoed W B. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Res, 2012, 132: 106–116

[19]刘巽浩, 高旺盛, 朱文珊. 秸秆还田的机理与技术模式. 北京: 中国农业出版社, 2001

Liu X H, Gao W S, Zhu W S. Theory and Technology Straw Mulching. Beijing: China Agriculture Press, 2001 (in Chinese)

[20]Kumar K, Goh K M. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Commun Soil Sci Plant Anal, 2003, 34: 2441–2460

[21]张仁和, 胡富亮, 杨晓钦, 高杰, 郝引川, 张兴华, 薛吉全. 不同栽培模式对旱地春玉米光合特性和水分利用率的影响. 作物学报, 2013, 39: 1619–1627

Zhang R H, Hu F L, Yang X Q, Gao J, Hao Y C, Zhang X H, Xue J Q. Effects of different cultivation patterns on photosynthetic characteristics and water use efficiency in dryland spring maize. Acta Agron Sin, 2013, 39: 1619–1627 (in Chinese with English abstract)

[22]Zhang J Y, Sun J S, Duan A W, Wang J L, Shen S J, Liu X F. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agric Water Manag, 2007, 92: 41–47

[23]Pliphi E, Mustafa P. Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in the northern Syria. Plant Soil, 2005, 268: 195–208

[24]刘婷, 贾志宽, 张睿, 郑甲成, 任世春, 杨宝平, 聂俊峰, 刘艳红, 王海霞, 秸秆覆盖对旱地土壤水分及冬小麦水分利用效率的影响. 西北农林科技大学学报(自然科学版), 2010, 38(7): 68–76

Liu T, Jia Z K, Zhang R, Zheng J C, Ren S C, Yang B P, Nie J F, Liu Y H Wang H X. Effect of straw mulching on soil moisture and water use efficiency of winter wheat in dryland. J Northwest A&F Univ (Nat Sci Edn), 2010, 38(7): 68–76 (in Chinese with English abstract)

[25]马永良, 师宏奎, 张书奎. 玉米秸秆整株全量还田土壤理化性状的变化及其对下茬小麦生长的影响. 中国农业大学学报, 2003, 8(增刊-l): 42–46

Ma Y L, Shi H K, Zhang S K. Whole maize straw addition: the changes of soil physical and chemical properties and the effect on winter wheat. J Chin Agric Univ, 2003, 8(suppl-l): 42–46 (in Chinese with English abstract)

[26]张树兰, Lars L, 同延安. 渭北旱塬不同田间管理措施下冬小麦产量及水分利用效率. 农业工程学报, 2005, (4): 28–32

Zhang S L, Lars L, Tong Y A. Effect of different field management practices on winter yield and water utilization efficiency in Weibei Loess Plateau. Trans CSAE, 2005, (4): 28–32 (in Chinese with English abstract)

[27]Bescansa P, Imaz M J, Virto I, Enrique A, Hoogmoed W B. Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res, 2006, 87: 19–27

[28]张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷产10000 kg小麦氮素和干物质积累与分配特性. 作物学报, 2009, 35: 1086–1096

Zhang F Q, Wang X Y, Yu Z W, Wang X Z, Wang H L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agron Sin, 2009, 35: 1086–1096 (in Chinese with English abstract)

[29]田中伟, 王方瑞, 戴廷波, 蔡剑, 姜东, 曹卫星. 小麦品种改良过程中物质积累转运特性与产量的关系. 中国农业科学, 2012, 45: 801–808

Tian Z W, Wang F R, Dai T B, Cai J, Jiang D, Cao W X. Characteristics of dry matter accumulation and translocation during the wheat genetic improvement and their relationship to grain yield. Sci Agric Sin, 2012, 45: 801–808 (in Chinese with English abstract)

[30]孟凡德, 马林, 石书兵, 郭飞, 刘兴强, 朱军, 毛吉贤, 刘正兴. 不同耕作条件下春小麦干物质积累动态及其相关性状的研究. 麦类作物学报, 2007, 27: 693– 698

Meng F D, Ma L, Shi S B, Guo F, Liu X Q, Zhu J, Mao J X, Liu Z X. Dynamics change of dry matter accumulation and relative characteristics of spring wheat under different tillage. J Triticeae Crops, 2007, 27: 693–698 (in Chinese with English abstract)

[31]晋小军, 黄高宝. 陇中半干旱地区不同耕作措施对土壤水分及利用效率的影响. 水土保持学报, 2005, 19(5): 109–112

Jin X J, Huang G B. Effects of different tillage methods on soil water and water use efficiency in semi-arid area of Gansu. Res Soil Water Conserv, 2005, 19(5): 109–112 (in Chinese with English abstract)

[32]De Vita P, Paolo E D, Feccondo G, Fonzo N D, Pisante M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res, 2007, 92: 69–78

[33]邹聪明, 王国鑫, 胡小东, 张云兰, 薛兰兰, Shakeel A A, 王龙昌. 秸秆覆盖对套作玉米苗期根系发育与生理特征的影响. 中国生态农业学报, 2010, 18: 496–500

Zhou C M, Wang G X, Zhang Y L, Xue L L. Effect of straw mulching on root development and physiological characteristics of intercropped maize at seedling stage. Chin J Eco-Agric, 2010, 18: 496–500 (in Chinese with English abstract)

[34]葛体达, 隋方功, 李金政, 吕银燕, 周广胜. 干旱对夏玉米根冠生长的影响. 中国农学通报, 2005, 21(1): 103–109

Ge T D, Sui F G, Li J Z, Lü Y Y, Zhou G S. Effects of drought on growth of root and shoot of summer maize. Chin Agric Sci Bull. 2005, 21(1): 103–109

[35]Casper B B, Jakson R B. Plant competition underground. Ann Rev Ecol Syst, 1997, 28: 545–570

[36]Muñoz-Romero V, Benítez-Vega J, López-Bellido L, López-Bellido R J. Monitoring wheat root development in a rainfed vertisol: tillage effect. Eur J Agron, 2010, 33: 182–187

[37]冯福学. 不同耕作措施对绿洲灌区冬小麦“根土系统”的影响. 甘肃农业大学博士毕业论文, 甘肃兰州, 2010

Feng F X. Effects of Different Tillage Measures on Root-Soil System of Winter Wheat in Hexi Oasis Area. PhD Dissertation of Gansu Agricultural University, Lanzhou, China, 2010 (in Chinese with English abstract)

[38]刘阳, 李吾强, 温晓霞, 廖允成. 玉米秸秆还田对接茬冬小麦旗光合特性的影响. 西北农业学报, 2008, 17(2): 80–85

Liu Y, Li W Q, Wen X X, Liao Y C. Effects of returning maize straw stem into field on the winter wheat flag leaf photosynthesis characteristic. Acta Agric Boreali-Occident Sin, 2008, 17(2): 80–85 (in Chinese with English abstract)

[39]王法宏, 任德昌, 王旭清. 施肥对小麦根系活性延缓旗叶衰老及产量的效应. 麦类作物学报, 2001, 12(3): 51–54

Wang F H, Ren D C, Wang X Q. Effect of applying fertilizer on root activity delaying the senescence of the flag leaf and yield in winter wheat. J Triticeae Crops, 2001, 12(3): 51–54 (in Chinese with English abstract)

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[9] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[10] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[11] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!