Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (12): 1779-1790.doi: 10.3724/SP.J.1006.2015.01779


Development and Application of a Functional Marker of the Blast Resistance Gene Pi35 in Rice

MA Jian**,MA Xiao-Ding**,ZHAO Zhi-Chao,WANG Shuai,WANG Jiu-Lin,WANG Jie,CHENG Zhi-Jun,LEI Cai-Lin*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2015-04-09 Revised:2015-07-20 Online:2015-12-12 Published:2015-08-28
  • Contact: 雷财林, E-mail: leicailin@caas.cn ** 同等贡献(Contributed equally to this work) E-mail:jian.ma2018@aliyun.com
  • Supported by:

    This research was supported by the National Natural Science Foundation of China (30871606, 31471758) and the Major Project of China on New Varieties of GMO Cultivation (2014ZX08001).


Rice blast is one of the most destructive diseases, and breeding resistant cultivars is considered to be the most economical and effective strategy to control this disease. The Pi35 gene shows partial resistance to leaf blast and has been used as a broad-spectrum and durable resistance source in rice breeding programs in Japan. However, its distribution is not clear in Chinese rice germplasm and cultivars. For the purpose to facilitate the application of Pi35 in rice breeding programs in China, we compared the coding sequences of Pi35 alleles in multiple resistant and susceptible rice cultivars, found a specific nucleotide 3780T which was only present in the functional resistance allele of Pi35, and further developed a Pi35 functional marker (Pi35-dCAPS). Among 281 rice accessions including 10 Fukei 138-derived japonica cultivars, 67 leading cultivars, and 204 accessions of rice mini-core collection of Chinese germplasm, five Fukei 138-derived cultivars (Kenjiandao 3, Kenjiandao 6, Kendao 8, Suijing 3, and Longjing 34) and two mini-core accessions (japonica cv. Funingzipijingzi and indica cv. Ximaxian) were detected to possess the intact Pi35 gene by using the Pi35-dCAPS marker in combination with the genomic sequencing of Pi35. These results will greatly facilitate the utilization of Pi35 in rice breeding programs by marker-assisted selection.

Key words: Rice, Blast disease, Partial resistance gene, Functional marker, Marker-assisted selection

[1]Ou S H. Blast. In: Rice Diseases, 2nd edn. The Cambrian News Ltd, UK. 1985. pp 109–201

[2]雷财林, 凌忠专, 王久林. 水稻抗病育种研究进展. 生物学通报, 2004, 39: 4–7

Lei C L, Ling Z Z, Wang J L. Research advances in rice breeding for disease resistance. Bull Biol, 2004, 39: 4–7 (in Chinese)

[3]Ezuka A. Field resistance of rice varieties to rice blast disease. Rev Plant Prot Res, 1972, 5: 1–21

[4]Kiyosawa A S. Genetic and epidemiological modeling of breakdown of plant disease resistance. Annu Rev Phytopathol, 1982, 20: 93–117

[5]Mackill D J, Bonman J M. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathol, 1992, 82: 746–749

[6]Nguyen T T T, Koizumi S, La T N, Zenbayashi K S, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet, 2006, 113: 697–704

[7]Fukuoka S, Yamamoto S, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen T T T, Koizumi S, Sugimoto K, Matsumoto T, Yano M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep, 2014, 4: 4550

[8]Young N D. QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol, 1996, 34: 479–501

[9]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998–1001

[10]Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498–510

[11]Ma J, Jia M H, Jia Y L. Characterization of rice blast resistance gene Pi61(t) in rice germplasm. Plant Dis, 2014, 98: 1200–1204

[12]Xu X, Hayashi N, Wang C T, Fukuota S, Kawasaki S, Takatsuji H, Jiang C J. Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed, 2014, 34: 691–700

[13]刘洋, 徐培洲, 张红宇, 徐建第, 吴发强, 吴先军. 水稻抗稻瘟病Pib基因的分子标记辅助选择与应用. 中国农业科学, 2008, 41: 9–14

Liu Y, Xu P Z, Zhang H Y, Xu J D, Wu F Q, Wu X J. Marker-assisted selection and application of blast resistant gene Pib in rice. Sci Agric Sin, 2008, 41: 9–14 (in Chinese with English abstract)

[14]Jia Y L, Wang Z H, Singh P. Development of dominant rice blast Pita resistance gene markers. Crop Sci, 2002, 46: 2145–2149

[15]Zhai C, Lin F, Dong Z Q, He X Y, Yuan B, Zeng X S, Wang L, Pan Q H. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2011, 189: 321–334

[16]Yuan B, Zhai C, Wang W J, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017–1028

[17]Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047–1055

[18]Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H. Identification of the blast resistance gene Pit in rice cultivars using functional markers. Thero Appl Genet, 2010, 121: 1357–1367

[19]Yi G, Lee S K, Hong Y K, Cho Y C, Nam M H, Kim S C, Han S S , Wang G L, Hahn T R, Ronald P C, Jeon J S. Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet, 2004, 109: 978–985

[20]Wang H M, Chen J, Shi Y F, Pan G, Shen H C, Wu J L. Development and validation of CAPS markers for marker-assisted selection of rice blast resistance gene Pi25. Acta Agron Sin, 2012, 38: 1960–1968

[21]Ramkumar G, Srinivasarao K, Madhan Mohan K, Sudarshan I, Sivaranjani A K P, Gopalakrishna K, Neeraja C N, Balachandran S M, Sundaram R M, Prasad M S, Shobha Rani N, Rama Prasad A M, Viraktamath B C, Madhav M S. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54 (Pikh). Mol Breed, 2011, 27: 129–135

[22]Ma J, Lei C L, Xu X T, Hao K, Wang J L, Cheng Z J, Ma X D, Ma J, Zhou K N, Zhang X, Guo X P, Wu F Q, Lin Q B, Wang C M, Zhai H Q, Wang H Y, Wan J M. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant-Microbe Interact, 2015, http://dx.doi.org/10.1094/MPMI-11-14-0367-R

[23]Mikami T, Kawamura Y, Horisue N. Estimation of resistant genes and field resistance to leaf blast of a rice cultivar ‘Fukei 138’. Rep Tohoku Br, Crop Sci Soc Japan, 1990, 33: 87–88 (in Japanese) 

[24]孙淑红. 日本优异种质资源藤系138的利用和评价. 黑龙江农业科学, 2011, (5): 4–6

Sun S H. Evaluation and utilization of Japanese excellent germplasm resources Tengxi 138. Heilongjiang Agric Sci, 2011, (5): 4–6 (in Chinese with English abstract)

[25]Ling Z Z, Mew T V, Wang J L, Lei C L, Hang N. Development of Chinese near-isogenic lines of rice and their differentiating ability of pathogenic races of blast fungus. Chin Agric Sci, 2001, 1: 50-56

[26]Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice, 2nd edn. Philippines: The International Rice Research Institute, 1971. pp 57–63

[27]雷财林, 张国民, 程治军, 马军滔, 王久林, 辛爱华, 陈平, 肖家雷, 张欣, 刘迎雪, 郭秀平, 王洁, 翟虎渠, 万建民. 黑龙江省稻瘟病菌生理小种毒力基因分析与抗病育种策略. 作物学报, 2011, 37: 18–27

Lei C L,Zhang G M, Cheng Z J, Ma J T, Wang J L, Xin A H, Chen P, Xiao J L , Zhang X, Liu Y X, Guo X P, Wang J, Zhai H Q, Wan J M. Pathogenic races and virulence gene structure of Magnaporthe oryzae population and rice breeding strategy for blast resistance in Heilongjiang Province. Acta Agron Sin, 2011, 37: 18–27(in Chinese with English abstract)

[28]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res, 1980, 8: 4321–4325

[29]Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10: 175

[30]Kobayashi N, Telebanco-Yanoria M J, Tsunematsu H, Kato H, Imbe T, Fukuta Y. Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Jpn Agric Res Q, 2007, 41: 31–37

[31]Lei C L, Hao K, Yang Y L, Ma J, Wang S, Wang J L, Cheng Z J, Zhao S S, Zhang X, Guo X P, Wang C M, Wan J M. Identification and fine mapping of two blast resistance genes in rice cultivar 93-11. Crop J, 2013, 1: 2–14

[32]Okutsu Y, Koga M, Ishihara M, Suga R. Inheritance of blast-resistance of upland rice varieties. Part 4. Improvement of blast resistance by combining of polygenes responsible for blast field resistance. Bull Ibaraki Agric Exp Stn, 1984, 24: 17-24

[33]杨一龙, 程治军, 李伟, 马建, 马进, 王久林, 雷财林. 水稻稻瘟病部分抗性基因的定位与克隆研究进展. 作物杂志, 2010, (6): 10–14

Yang Y L, Cheng Z J, Li W, Ma J, Ma J, Wang J L, Lei C L. Advances in molecular mapping and cloning of partial blast resistance genes in rice. Crops, 2010, (6): 10–14 (in Chinese with English abstract)

[34]Fukuoka S, Norikuni S, Mizukami Y, Koga H, Yamanouchi U, Yoshioda Y, Hayashi N, Ebana K, Mizobuchi R, Yano M. Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep, 2015, 5: 7773

[35]Ashkani S, Rafii M Y, Rahim H A, Latif M A. Mapping of the quantitative trait locus (QTL) conferring partial resistance to rice leaf blast disease. Biotechnol Lett, 2013, 35: 799–810

[36]Mizobuchi R, Sato H, Fukuoka S, Yamamoto S, Kawasaki-tanaka A, Fukuta Y. Mapping of a QTL for field resistance to blast (Pyricularia oryzae Cavara) in ingngoppor-tinawon, a rice (Oryza sativa L.) landrace from the Philippines. Jpn Agric Res Q, 2014, 4: 425–431

[37]Ballini E, Morel J B, Droc G, Price A, Courtois B, Notteghem J L, Tharreaul D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact, 2008, 21: 859–868

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[3] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[4] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[5] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[6] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[7] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[8] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[9] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[10] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[11] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[12] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[13] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[14] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Full text



No Suggested Reading articles found!