[1] Sturm A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol, 1999, 121: 1–8
[2]Tang G Q, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell, 1999, 11: 177–189
[3] Roitsch T. Source-sink regulation by sugar and stress. Curr Opin Plant Biol, 1999, 2: 198–206
[4] Sturm A, Hess D, Lee H S, Lienhard S. Neutral invertase is a novel type of sucrose-cleaving enzyme. Physiol Plant, 1999, 107: 159–165
[5] Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol, 2004, 7: 235–246
[6] Ruan Y L. Goldacre Paper: Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fibre. Funct Plant Biol, 2007, 34: 1
[7] Pugh D A, Offler C E, Talbot M J, Ruan Y L. Evidence for the role of transfer cells in the evolutionary increase in seed and fiber biomass yield in cotton. Mol Plant, 2010, 3: 1075–1086
[8] Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant, 2010, 3: 942–955
[9] Tymowska-Lalanne Z, Kreis M. The plant invertases: physiology, biochemistry and molecular biology. Adv Bot Res, 1998, 28: 71–117
[10] Vargas W, Pontis H, Salerno G. Differential expression of alkaline and neutral invertases in response to environmental stresses: characterization of an alkaline isoform as a stress-response enzyme in wheat leaves. Planta, 2007, 226: 1535–1545
[11] Weber H, Borisjuk L, Wobus U. Molecular physiology of legume seed development. Annu Rev Plant Biol, 2005, 56: 253–279
[12] Hayes M A, Davies C, Dry I B. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J Exp Bot, 2007, 58: 1985–1997
[13] Kim J Y, Mahe A, Guy S, Brangeon J, Roche O, Chourey P S, Prioul J L. Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene, 2000, 245: 89–102
[14] Kang B H, Xiong Y, Williams D S, Pozueta-Romero D, Chourey P S. Miniature1-encoded cell wall invertase is essential for assembly and function of wall-in-growth in the maize endosperm transfer cell. Plant Physiol, 2009, 151: 1366–1376
[15] Jin Y, Ni D A, Ruan Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 2009, 21: 2072–2089
[16] Chourey P S, Li Q B, Cevallos-Cevallos J. Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize. Plant Sci, 2012, 184: 45–53
[17] Schaarschmidt S, Kopka J, Ludwig-Muller J, Hause B. Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. Plant J, 2007, 51: 390–405
[18] Sun L, Yang D L, Kong Y, Chen Y, Li X Z, Zeng L J, Li Q, Wang E T, He Z H. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. Mol Plant Pathol, 2014, 15: 161–173
[19] Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J. Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol, 2005, 60: 615–634
[20] Murayama S, Handa H. Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta, 2007, 225: 1193–1203
[21] Nonis A, Ruperti B, Pierasco A, Canaguier A, Adam-Blondon A F, Di Gaspero G, Vizzotto G. Neutral invertases in grapevine and comparative analysis with Arabidopsis, poplar and rice. Planta, 2008, 229: 129–142
[22] Bocock P N, Morse A M, Dervinis C, Davis J M. Evolution and diversity of invertase genes in Populus trichocarpa. Planta, 2008, 227: 565–576
[23] Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M,Wang T L. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J Exp Bot, 2009, 60: 3353–3365
[24] 牛俊奇, 王爱勤, 黄静丽, 杨丽涛, 李杨瑞. 甘蔗中性/碱性转化酶基因SoNIN1的克隆和表达分析. 作物学报, 2014, 40: 253–263
Niu J Q, Wang A Q, Huang J L, Ling Y R. Cloning and expression analysis of sugarcane alkaline/neutral invertase gene SoNIN1. Acta Agron Sin, 2014, 40: 253–263 (in Chinese with English abstract)
[25] Ruan Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol, 2014, 65: 33–67
[26] Yao Y, Geng M T, Wu X H, Liu J, Li R M, Hu X W, Guo J C. Genome-wide identification, expression, and activity analysis of alkaline/neutral invertase gene family from cassava (Manihot esculenta Crantz). Plant Mol Biol Rep, 2014, 33: 304–315
[27] Vargas W A, Pontis H G, Salerno G L. New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta, 2008, 227: 795–807
[28] Qi X, Wu Z, Li J, Mo X, Wu S, Chu J, Wu P. AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol, 2007, 64: 575–587
[29] Xiang L, Le Roy K, Bolouri-Moghaddam M R, Vanhaecke M, Lammens W, Rolland F, Van den Ende W. Exploring the neutral invertase–oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot, 2011, 62(11): 3849–3862
[30] Martin M L, Lechner L, Zabaleta E J,Salerno G L. A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis. Planta, 2013, 237: 813–822
[31] Lou Y, Gou J Y, Xue H W. PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. Plant Cell, 2007, 19: 163–181
[32] Jia L, Zhang B, Mao C, Li J, Wu Y, Wu P, Wu Z. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta, 2008, 228: 51–59
[33] Thomashow M F. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599
[34] Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X,Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415
[35] Yue C, Cao H L, Wang L, Zhou Y H, Huang Y T, Hao X Y, Wang Y C, Wang B, Yang Y J, Wang X C. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol Biol, 2015, 88: 591–608
[36] 岳川, 曹红利, 周艳华, 王璐, 郝心愿, 王新超, 杨亚军. 茶树谷胱甘肽还原酶基因CsGRs的克隆与表达分析. 中国农业科学, 2014, 47: 3277–3289
Yue C, Cao H L, Zhou Y H, Wang L, Hao X Y, Wang X C, Yang Y J. Cloning and expression analysis of glutathione reductase genes (CsGRs) in tea plant (Camellia sinensis). Sci Agric Sin, 2014, 47: 3277–3289 (in Chinese with English abstract)
[37] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739
[38] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. The proteomics protocols handbook. Biochemistry, 2005, 71: 696
[39] Petersen T N, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth, 2011, 8: 785–786
[40] Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 2000, 300: 1005–1016
[41] Zhou X Z, Lu P J, Wulf G, Lu K P. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell Mol Life Sci, 1999, 56: 788–806
[42] Jochmann R, Holz P, Sticht H, Sturzl M. Validation of the reliability of computational O-GlcNAc prediction. Biochim Biophys Acta, 2014, 1844: 416–421
[43] Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22: 195–201
[44] Hao X Y, Horvath D P, Chao W S, Yang Y J, Wang X C, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci,15: 22155–22172
[45] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402–408
[46] 曹红利, 岳川, 郝心愿, 王新超, 杨亚军. 茶树胆碱单加氧酶CsCMO的克隆及甜菜碱合成关键基因的表达分析. 中国农业科学, 2013, 46: 3087–3096
Cao H L,Yue C, Hao X Y, Wang X C, Yang Y J. Cloning of choline monooxygenase (CMO) gene and expression analysis of the key glycine betaine biosynthesis-related genesin tea plant(Camellia sinensis). Sci Agric Sin, 2013, 46: 3087–3096 (in Chinese with English abstract)
[47] Sturm A, Chrispeels M J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell, 1990, 2: 1107–1119
[48] Barratt D H, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule A J, Smith A M. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA, 2009, 106: 13124–13129
[49] Maddison A L, Hedley P E, Meyer R C, Aziz N, Davidson D, Machray G C. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Mol Biol, 1999, 41: 741–751
[50] Goetz M, Godt D E, Guivarc'h A, Kahmann U, Chriqui D, Roitsch T. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA, 2001, 98: 6522–6527
[51] 王菲. 枳中性转化酶基因PtrNINV克隆及其功能分析. 华中农业大学硕士学位论文, 湖北武汉, 2013. pp 35–37
Wang F. Cloning and Functional Analysis of PtrNINV, a NeutralInvertase, in Poncirus Trifoliata. MS Thesis of Huazhong Agricultural University. Wuhan, China, 2013. pp 35–37 (in Chinese with English abstract) |