Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 1095-1102.doi: 10.3724/SP.J.1006.2018.01095

• RESEARCH NOTES • Previous Articles    

Development and Validation of Molecular Marker for Protein Content in Tetraploid Potato Tuber

Hong-Bo SHAN,Jia-Wen SHI,Ying SHI()   

  1. College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2018-01-16 Accepted:2018-03-26 Online:2018-07-10 Published:2018-04-27
  • Contact: Ying SHI E-mail:yshi@neau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Programs (2017YFD0101906).

Abstract:

Protein content is one of the most important quality traits in potato. In this study, SCAR8-107, a protein content linked molecular marker, was developed using Atlantic, Dingshu 1, and their F1 segregation population consisting of 173 individuals by reduced-representation sequencing and bulked segregant analysis. A further testing of marker SCAR8-107 was performed using 74 high protein content individuals, 42 low protein content individuals and some tetraploid varieties, showing the selection accuracy of 90.51% and 72.97% between marker test and phenotyping in segregation population and tetraploid varieties respectively. Pearson’s correlation analysis also showed that the marker SCAR8-107 was significantly correlated to protein content in potato. The SCAR8-107 marker could be used in marker-assisted selection.

Key words: potato protein, marker development, BSA mixing pool sequencing, marker-assisted selection

Table1

Information of potato varieties"

序号
Code
品种
Variety
蛋白含量
Protein content (%)
序号
Code
品种
Variety
蛋白含量
Protein content (%)
1 -37 1.18 28 Shlin-6 1.54
2 东农305 Dongnong 305 1.39 29 坝薯10号 Bashu 10 1.50
3 东农308 Dongnong 308 1.45 30 BC 1.45
4 东农310 Dongnong 310 2.21 31 大200305-32 Da 200305-32 1.50
5 东农311 Dongnong 311 1.17 32 大200410-19 Da 200410-19 2.15
6 东农312 Dongnong 312 1.68 33 大地3号 Dadi 3 1.53
7 东农313 Dongnong 313 1.26 34 定薯3号 Dingshu 3 2.01
8 东农314 Dongnong 314 1.68 35 东农03-1 Dongnong 03-1 1.44
9 东农316 Dongnong 316 1.44 36 费乌瑞它 Favourite 1.69
10 东农317 Dongnong 317 1.63 37 H9900-1 1.58
11 Allora 1.56 38 H99-9 2.12
12 B190 1.59 39 克新12 Kexin 12 2.06
13 B192 1.41 40 克新22 Kexin 22 1.98
14 B200 1.64 41 克新27 Kexin 27 1.68
15 B201 1.71 42 希森3号 Xisen 3 1.95
16 Carlar 2.30 43 夏坡蒂 Shepody 2.55
17 CIP39048 1.33 44 鑫科1号 Xinke 1 1.51
18 D412 1.45 45 兴佳2号 Xingjia 2 1.47
19 DESIREE 1.22 46 延薯3号 Yanshu 3 1.79
20 FW5 1.75 47 延薯4号 Yanshu 4 2.20
21 Gala 1.53 48 延薯6号 Yanshu 6 1.47
22 K200410-137 2.32 49 延薯7号 Yanshu 7 1.51
23 NY128 1.02 50 延薯8号 Yanshu 8 0.94
24 Q12 1.59 51 延薯97-8 Yanshu 97-8 1.71
25 早大白 Zaodabai 1.37 52 云薯201 Yunshu 201 1.18
26 中薯3号 Zhongshu 3 1.90 53 云薯301 Yunshu 301 2.09
27 中薯5号 Zhongshu 5 0.94 54 早50 Zao 50 1.59

Fig. 1

Distribution of group protein content"

Table 2

Determination of group protein content"

蛋白含量
Protein content (%)
总数
Total number
极端材料数量
Number of extreme individuals
极高蛋白 Extremely high protein >2.5 18 25 (>2.4)
高蛋白 High protein 2.0-2.5 56
中蛋白 Medium protein 1.5-2.0 57
中低蛋白 Medium-low protein 1.0-1.5 39
极低蛋白 Extremely low protein <1.0 3 25 (<1.3)

Table 3

Primer information"

引物名称
Primer name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
退火温度
Anneal temp. (°C)
产物大小
Product size (bp)
chr8-100 CTGTTGGTCCGTGGTCTGG CGAGAGAGTGAATGGGCTAAGG 58 798
chr8-101 TCGCACAAGAACAACCACAATC ATACATTCAGCCATTCAGACTTCG 59 474
chr8-102 CAACAAAGTCTGAATGGCTGAATG AGGCTATGCTGCTAAGGATGC 59 488
chr8-103 TGAGAGGTCATCGTCTGGTTG TGGCTGTGGTTTAAGAAGTTGG 59 717
chr8-104 GGATGGCTCGTGATTGTCTTG TTTACTTCATTGGGTCGTTCGTC 59 699
chr8-105 TTCAGCGAGGACATAGCACAG CTCACTACACTCTTGGCACATTG 58 892
chr8-106 ACTCATAAGCATCCTCATTCTCAG CTAACCTCCTTCACTCTTCTATCC 60 569
chr8-107 GATGTCTAATACTCCGTCAAGGTG TCAAAGCATTACAACAACAAAGGG 58 724
chr8-108 CGCCAAGCCTCCAACTACTG ACTTTGAATCCTCTTTCCAACTCC 58 651
chr8-109 TTACCGTCACATTACATTTCACAG CTCCCATACTCTCTTCTCTAAACC 58 544
chr8-110 ATGGGATGTGTCAAGGGTCTC CCTCTCACTTCACTCTTCTCAAC 59 772
chr8-111 TCAATCCACGGACACAGACC GCCTAAACCCTCAACTCAAACG 58 515
chr8-112 CAAAAGTGATGGACAAAGTGACG CCTATCTCCCTCTGCTGTTCC 58 807
chr8-113 CACCTGAATGGACGGATATAAGC TGGGAGTGATAAGTCTGGTATGG 58 686
chr8-114 ATCAAGAAGAGAACGAGCAAGAC CAGACCCACCACAACATCAATC 58 671
chr8-115 GCTATCCTGCTATTCTCCGAAG TCTGACCATCACGACATCTCC 59 461
chr8-116 AACATCTGACTGTCTATGAAGCC GAGCACCGATATGAGGGAGAG 61 733
chr8-117 CTTACCGCTTCAGGCTTTCTC TTGATAGTCCTCAGGCATAAACG 58 752
chr8-118 CTGGCTTATGAACTCGGTGTC ATTCCTTGCTGTGTCCTTTGC 58 575
chr8-119 GGTTCAATTAAAGGTGTGCTGTG ATGAGGTGAGGACAATGCTAGG 58 745
chr8-120 TCAACAAAGACCCACATCACAAG TCACCTTCACGAGCCACTTC 58 686
chr8-121 TGCCGCATTATTGTTGTTATTCG GCCGCTCTCAGTTCTCTCC 59 484
chr8-89 TCAGATCACGCATAAATCGGTTC TGGACATAAACACGGGACTTAGG 59 406
chr8-90 TTGCTTCCGTGAAAGTGTTATGG TCATCAGTGGCTTGGCTTACC 60 748
chr8-91 CCTCCAGAGCCACCACTTAC TTGAACTTCCAATGCTACCATCC 58 626
chr8-92 GAGGGTGGAAAGTCGTGTTATG AATGAATGTGGTGGTGGATGC 58 831
chr8-93 GAGGGTGGAAAGTCGTGTTATG TGGATGCTCTTAATTGGCTATGG 58 817
chr8-94 AGGTGTAAGTGTAGGTGTAGGTG GCGAGCATCTTGGAGTTAGC 58 464
chr8-95 ACAAGGTGAATTGGAAGATGCTC TGGAAGGACAATCTGCTACGAC 58 578
chr8-96 GCGATGCTGCTATATGGTTCAC CTCCTCACGAATCTCCTCTGC 58 453
chr8-97 CATCCTCCGCCACCCAAAG CAGAATCAGCAGCAGCATCC 58 835
chr8-98 GGAGGAATTTGCGTGGGAAAG GCCGTATGTTGTGAAGGAAGC 58 705
chr8-99 CTCATCAGCATCACACTTCACTC AAGGCAAGGGTAAAGGCAAATC 58 571

Fig. 2

PCR products of some primers in parents Dingshu 1 and AtlanticPrimer number: 8-106, 8-107, 8-108, 8-109, 8-110. The first and second lanes of each pair of primers are Dingshu 1 and Atlantic."

Fig. 3

PCR amplification results of primers 8-107 in partial extremely high protein and extremely low protein progeniesP1: low protein parent Dingshu 1; P2: high protein parent Atlantic; numbers 39, 46, 49, 50, and 51 are extremely high protein progeny materials; numbers 32, 43, 45, 53, and 54 are extremely low protein progeny materials."

Fig. 4

PCR amplification results of SCAR8-107 marks in partial high protein (A) and low protein (B) progeniesP1: low protein parent Dingshu 1; P2: high protein parent Atlantic; code of low protein content and high protein content progenies."

Table 4

Identification of phenotype for protein content and statistics of marker test results in partial samples of F1"

标记检测
Marker test
样本总数
Total number of samples
表型
Phenotype
样本数
Number of samples
百分比
Percentage (%)
阳性
Positive
70 高蛋白含量 High protein content 67 95.71
低蛋白含量 Low protein content 3
阴性
Negative
46 高蛋白含量 High protein content 8 82.61
低蛋白含量 Low protein content 38

Table 5

Identification of protein phenotype and statistics of marker test results in partial varieties"

标记检测
Marker test
样本总数
Total number of samples
表型
Phenotype
样本数
Number of samples
百分比
Percentage (%)
阳性
Positive
14 高蛋白含量 High protein content 10 71.42
低蛋白含量 Low protein content 4
阴性
Negative
23 高蛋白含量 High protein content 6 73.91
低蛋白含量 Low protein content 17

Fig. 5

PCR amplification results of SCAR8-107 marks in partial high protein (A) and low protein (B) varietiesP1: low protein parent Dingshu 1; P2: high protein parent Atlantic; 1-12: Shepody, K200410-137, Carlora, Dongnong 310, Yanshu 4, Da 200410-19, Hu H 99-9, Yunshu 301, Kexin 12, Dingshu 3, Kexin 22, Xisen 3; 13-24: Dongnong 316, B192, Dongnong 305, Zaodabai, CIP39048, Dongnong 313, DESIREE, Yunshu 201, Dongnong 311, NY128, Zhongshu 5, Yanshu 8."

[1] 王中平 . 中国马铃薯主栽品种块茎中蛋白质含量分析. 见: 陈伊里, 屈冬玉主编. 马铃薯产业与现代可持续农业(2015). 黑龙江哈尔滨: 哈尔滨地图出版社: 2015. pp 257-261
Wang Z P. Analysis of protein content in tubers of Chinese potato cultivars. In: Chen Y L, Qu D Y, eds. Potato Industry and Modern Sustainable Agriculture (2015). Harbin: Harbin Cartographic Publishing House , 2015. pp 257-261(in Chinese with English abstract)
[2] 张泽生, 刘素稳, 郭宝芹 . 马铃薯蛋白质的营养评价. 食品科技, 2007, ( 11):219-221
doi: 10.3969/j.issn.1005-9989.2007.11.065
Zhang Z S, Liu S W, Guo B Q . Nutritional evaluation of potato protein. Food Sci Tech, 2007, ( 11):219-221 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-9989.2007.11.065
[3] 潘牧, 彭慧元, 邓宽平, 雷尊国, 李怀奎, 牟时锋 . 马铃薯蛋白的研究进展. 贵州农业科学, 2012,40(10) : 22-26
doi: 10.3969/j.issn.1001-3601.2012.10.007
Pan M, Peng H Y, Deng K P, Lei Z G, Li H K, Mou S F . Progress in potato protein research. Guizhou Agric Sci, 2012,40(10):22-26 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-3601.2012.10.007
[4] Kon S K, Klein A . The value of the whole potato in human nutrition. Biochem J, 1928,22:258-260
doi: 10.1042/bj0220258 pmid: 16744005
[5] Chick H, Slack E B . Distribution and nutritive value of nitrogenous substances in the potato. Biochem J, 1949,4:211-221
doi: 10.1016/S0140-6736(00)88216-1 pmid: 16748615
[6] Orbegozo J, Roman M L, Rivera C, Gamboa S, Tovar J C, Forbes G A, Lindqvist-Kreuze H, Kreuze J F, Ghislain M . Rpi-blb2, gene from Solanum bulbocastanum, confers extreme resistance to late blight disease in potato. Plant Cell Tissue Organ Cult, 2016,125:269-281
[7] Colton L M, Groza H I, Wielgus S M, Jiang J . Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Sci, 2006,46:589-594
[8] Werij J S . Genetic Analysis of Potato Tuber Quality Traits. MS Thesis of Wageningen University, Wageningen, Netherlands, 2011
[9] Ramakrishnan A P, Ritland C E, Sevillano R H B, Riseman A . Review of potato molecular markers to enhance trait selection. Am J Potato Res, 2015,92:455-472
doi: 10.1007/s12230-015-9455-7
[10] 祁缘 . 马铃薯晚疫病抗性QTL区域分子标记开发. 华中农业大学硕士学位论文, 湖北武汉, 2013
Qi Y . The Exploitation of Molecular Markers in the Potato Late Blight Resistance QTL Region. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 ( in Chinese with English abstract)
[11] 雷剑, 柳俊 . 一个与马铃薯青枯病抗性连锁的SRAP标记筛选. 中国马铃薯, 2006,20:150-153
doi: 10.3969/j.issn.1672-3635.2006.03.005
Lei J, Liu J . Identification of a SRAP marker linked to Ralstonia solanacearum resistance in diploid potato. China Potato J, 2006,20:150-153 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-3635.2006.03.005
[12] Rak K, Bethke P C, Palta J P . QTL mapping of potato chip color and tuber traits within an autotetraploid family. Mol Breed, 2017, 37: 15.
[13] Tiwari J K, Devi S, Sharma S, Poonam C, Shashi R, Bir P S . Allele mining in solanum germplasm: cloning and characterization of RB-homologous gene fragments from late blight resistant wild potato species. Plant Mol Biol Rep, 2015,33:1584-1598
[14] 邬信康 . 马铃薯蛋白基因及其在研究块茎形成和品种改良中的作用. 中国马铃薯, 1991,5:235-238
Wu X K . Potato protein gene and its role in the study of tuber formation and variety improvement. China Potato J, 1991,5:235-238 (in Chinese with English abstract)
[15] Takagi H, Tamiru M, Abe A, Kentaro Y, Aiko U, Hiroki Y, Tsutomu O, Hiroe U, Eiko K, Chikako M, Satoshi N, Shunichi K, Hiroyuki K, Hideo M, Naoya U, Sophien K, Pyohei T . Mutmap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol, 2015,33:445-449
doi: 10.1038/nbt.3188 pmid: 25798936
[16] Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S . QTL-Seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet, 2014,127:1491-1499
[17] 邢延豪, 周延清, 楚素霞, 郭静佩, 周鹏, 范念斯 . CAPS标记技术及其应用进展. 江苏农业科学, 2011,39(5):74-76
doi: 10.3969/j.issn.1002-1302.2011.05.028
Xing Y H, Zhou Y Q, Chu S X, Guo J P, Zhou P, Fan N S . CAPS marker technology and its application progress. Jiangsu Agric Sci, 2011. 39(5):74-76 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-1302.2011.05.028
[18] Bryan G J, McLean K, Bradshaw J E, De Jong W S, Phillips M, Castelli L, Waugh R . Mapping QTLs for resistance to the cyst nematode Clobodera pallida derived from the wild potato species Solarium vernei. Theor Appl Cenet, 2002,105:68-77
[19] 王加加, 徐建飞, 李颖, 王凤义, 黄三文 . 马铃薯抗晚疫病主效基因R10的RGA-CAPS标记的开发. 园艺学报, 2008,35:885-890
doi: 10.3321/j.issn:0513-353X.2008.06.018
Wang J J, Xu J F, Li Y, Wang F Y, Huang S W . Developing of RGA-CAPS markers for resistant gene R10 to potato late blight. Acta Hortic Sin, 2008,35:885-890 (in Chinese with English abstract)
doi: 10.3321/j.issn:0513-353X.2008.06.018
[20] Tiwari J K, Siddappa S, Singh B P, Kaushik S K, Chakrabarti S K, Bhardwaj V, Chandel P . Molecular markers for late blight resistance breeding of potato: an update. Plant Breed, 2013,132:237-245
doi: 10.1111/pbr.12053
[21] Muktar M S, Lubeck J, Strahwald J, Gebhardt C . Selection and validation of potato candidate genes for maturity corrected resistance to Phvtophthor infestans based on differential expression combined with SNP association and linkage mapping. Front Cenet, 2015,6:294. doi: 10.3389/fgene.2015.00294
[22] 朱文文, 徐建飞, 李广存, 段绍光, 刘杰, 卞春松, 庞万福, De Jong W, 金黎平 . 马铃薯块茎形状基因CAPS标记的开发与验证. 作物学报, 2015,41:1529-1536
doi: 10.3724/SP.J.1006.2015.01529
Zhu W W, Xu J F, Li G C, Duan S G, Liu J, Bian C S, Pang W F, De Jong W, Jin L P . Development and verification of a CAPS marker linked to tuber shape gene in potato. Acta Agron Sin, 2015,41:1529-1536 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01529
[23] 李兴翠, 李广存, 徐建飞, 段绍光, 卞春松, 庞万福, 刘杰, 金黎平 . 四倍体马铃薯熟性连锁SCAR标记的开发与验证. 作物学报, 2017,43:821-828
doi: 10.3724/SP.J.1006.2017.00821
Li X C, Li G C, Xu J F, Duan S G, Bian C S, Pang W F, Liu J, Jin L P . Development and verification of SCAR marker linked to maturity in tetraploid potato. Acta Agron Sin, 2017, 43:821-828 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00821
[24] 陈峰, 周继华, 张士永, 严长杰, 朱文银, 孙亚伟, 袁守江, 杨连群 . 水稻抗条纹叶枯病基因Stv-bi的分子标记辅助选择. 作物学报, 2009,35:597-601
doi: 10.3724/SP.J.1006.2009.00597
Chen F, Zhou J H, Zhang S Y, Yan C J, Zhu W Y, Sun Y W, Yuan S J, Yang L Q . Marker-assisted selection for Stv-bi gene control-ling resistance to rice stripe disease. Acta Agron Sin, 2009,35:597-601 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00597
[25] 邱彩玲, 白雅梅, 吕文河, 徐学谱, 李勇, 吕典秋 . 利用单向有性多倍化改良马铃薯的蛋白质含量. 作物杂志, 2009, ( 4):23-26
Qiu C L, Bai Y M, Lyu W H, Xu X P, Li Y, Lyu D Q . The protein content of the modified potato was improved by one-way sexual polyploification. Crops, 2009, ( 4):23-26 (in Chinese with English abstract)
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[3] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[4] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[5] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
[6] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[7] ZHANG An-Ning,LIU Yi,WANG Fei-Ming,XIE Yue-Wen,KONG De-Yan,NIE Yuan-Yuan,ZHANG Fen-Yun,BI Jun-Guo,YU Xin-Qiao,LIU Guo-Lan,LUO Li-Jun. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line [J]. Acta Agronomica Sinica, 2019, 45(11): 1764-1769.
[8] Heng-Bo WANG,Nai-Yan XIAO,Zhuan-Wei ZHU,Cui-Cui LIU,ALAM Intikhab,Ping-Hua CHEN,Yun-Hai LU. Development and Characterization of SSR Markers from the Whole Genome Sequences of Saccharum officinarum (LA-purple) [J]. Acta Agronomica Sinica, 2018, 44(9): 1400-1410.
[9] Yu-Ling LI,Zheng-Ning JIANG,Wen-Jing HU,Dong-Sheng LI,Jing-Ye CHENG,Xin YI,Xiao-Ming CHENG,Rong-Lin WU,Shun-He CHENG. Mapping QTLs against Leaf Rust in CIMMYT Wheat C615 [J]. Acta Agronomica Sinica, 2018, 44(6): 836-843.
[10] Yu TIAN,Lei YANG,Ying-Hui LI,Li-Juan QIU. Development and Utilization of KASP Marker for SCN3-11 Locus Resistant to Soybean Cyst Nematode [J]. Acta Agronomica Sinica, 2018, 44(11): 1600-1611.
[11] Zhan-Wang ZHU, Deng-An XU, Shun-He CHENG, Chun-Bao GAO, Xian-Chun XIA, Yuan-Feng HAO, Zhong-Hu HE. Characterization of Fusarium Head Blight Resistance Gene Fhb1 and Its Putative Ancestor in Chinese Wheat Germplasm [J]. Acta Agronomica Sinica, 2018, 44(04): 473-482.
[12] Hong-Jun ZHANG, Zhen-Qi SU, Gui-Hua BAI, Xu ZHANG, Hong-Xiang MA, Teng LI, Yun DENG, Chun-Yan MAI, Li-Qiang YU, Hong-Wei LIU, Li YANG, Hong-Jie LI, Yang ZHOU. Improvement of Resistance of Wheat Cultivars to Fusarium Head Blight in the Yellow-Huai Rivers Valley Winter Wheat Zone with Functional Marker Selection of Fhb1 Gene [J]. Acta Agronomica Sinica, 2018, 44(04): 505-511.
[13] YAO Shu, CHEN Tao,ZHANG Ya-Dong,ZHU Zhen,ZHAO Qing-Yong,ZHOU Li-Hui,ZHAO Ling,ZHAO Chun-Fang,WANG Cai-Lin*. Pyramiding Pi-ta, Pi-b and Wx-mq Genes by Marker-assisted Selection in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2017, 43(11): 1622-1631.
[14] WAN Xue-Bei,LI Dong-Xu,XU Yi,XUJian-Tang,ZHANG Li-Lan,ZHANGLie-Mei,LINLi-Hui,QI Jian-Min,ZHANG Li-Wu. Development and Polymorphism Evaluation of EST-SSR Markers in Kenaf [J]. Acta Agron Sin, 2017, 43(08): 1170-1180.
[15] LI Xing-Cui,LI Guang-Cun,XU Jian-Fei,DUAN Shao-Guang,BIAN Chun-Song,PANG Wan-Fu,LIU Jie,JIN Li-Ping*. Development and Verification of SCAR Marker Linked to Maturity in Tetraploid Potato [J]. Acta Agron Sin, 2017, 43(06): 821-828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!