Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (9): 1400-1410.doi: 10.3724/SP.J.1006.2018.01400

• RESEARCH PAPERS • Previous Articles     Next Articles

Development and Characterization of SSR Markers from the Whole Genome Sequences of Saccharum officinarum (LA-purple)

Heng-Bo WANG(),Nai-Yan XIAO,Zhuan-Wei ZHU,Cui-Cui LIU,ALAM Intikhab,Ping-Hua CHEN,Yun-Hai LU()   

  1. Key Laboratory of Ministry of Agriculture for Sugarcane Biology and Genetic Breeding (Fujian), Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2017-11-20 Accepted:2018-03-26 Online:2018-09-10 Published:2018-04-09
  • Contact: Yun-Hai LU E-mail:wanghengbo_0354@126.com;lu@fafu.edu.cn
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-20-1);National Sugarcane Engineering Research Center of Director Project Fund in 2017 (ptjh1500117)

Abstract:

Modern sugarcane cultivars (2n = 100-130) are derived from interspecific hybridization and backcross breeding between Saccharum officinarum (2n = 80) and Saccharum spontaneum (2n = 40-128), forming polyploid and aneuploid crops. The main components (80%-90%) of the sugarcane cultivars’ genome are originated from S. officinarum. The development and mining of genomic SSR molecular marker of S. officinarum, will benefit sugarcane genetic diversity analysis, molecular marker assisted selection, and construction of genetic maps. In this study, we explored the SSR loci from 255 398 predicted gene sequences (with a cumulative length of 1 029 222 285 bp) derived from the whole genome sequencing project of a S. officinarum clone LA-purple, by combining Perl program with bioinformatics software. A total of 153 150 SSR loci, with an average of 1.67 genes per SSR locus, were identified, of which 39 556 (25.8%) were dinucleotide repeat motifs and 50 072 (32.7%) were tri-nucleotide repeat motifs. Among the dinucleotide repeat motifs, TA/AT had the highest proportion, accounting for 41.4%, while CG/GC had the lowest proportion, accounting for only 4.6%. Among the trinucleotide repeat motifs, TGT/ACA had the highest proportion, accounting for 15.6%. One hundred SSR loci with 60-90 repeats of TA/AT motifs were selected and analyzed by PCR amplification in 12 representative Saccharum clones, of which 52 were polymorphic among the 12 clones and 27 were polymorphic between the tested two modern sugarcane cultivars. The genome-wide development of these gene-based SSR markers will not only facilitate the DNA fingerprinting analysis of sugarcane cultivars, but also help to construct the genetic maps, analyze the genetic diversity, study the genetic mechanism of important traits in Saccharum species, and provide important support to the molecular breeding in sugarcane.

Key words: sugarcane, genome sequence, SSR, marker development, polymorphism

Table 1

Names and origins of sugarcane germplasm used in the experiment"

序号
Code
名称
Name
类型
Type
倍性
Ploidy
1 57NG208 大茎野生种 S. robustum
2 NG77-004 大茎野生种 S. robustum
3 云南75-2-11 YN75-2-11 割手密 S. spontaneum 八倍体 Octoploid
4 福建89-1-1 FJ89-1-1 割手密 S. spontaneum 九倍体 Nonaploid
5 广东21 GD21 割手密 S. spontaneum 十倍体 Decaploid
6 贵州78-2-28 GZ78-2-28 割手密 S. spontaneum 十二倍体 Dodecaploid
7 黑车里本 Black cheribon 热带种 S. officinarum 八倍体 Octoploid
8 路达士 Loethers 热带种 S. officinarum 八倍体 Octoploid
9 克里斯塔林娜 Crystalina 热带种 S. officinarum 八倍体 Octoploid
10 拔地拉 Badila 热带种 S. officinarum 八倍体 Octoploid
11 桂糖35 GT35 栽培种 Saccharun hybrid
12 科5 K5 栽培种 Saccharun hybrid

"

Fig. 1

Frequency distribution of dinucleotide repeat motifs"

Fig. 2

Frequency distribution of trinucleotide repeat motifs"

Fig. 3

Representative PCR amplification patterns of four pairs of SSR primers of AT/TA motif in 12 tested Saccharum clones1: 57NG208; 2: NG77-004; 3: YN75-2-11; 4: FJ89-1-1; 5: GD21; 6: GZ78-2-28; 7: Black cheribon; 8: Loethers; 9: Crystalina; 10: Badila; 11: GT35; 12: K5; M: 100 bp DNA ladder."

"

Fig. 4

UPGMA dendrogram of 12 Saccharum clones based on SSR markers"

[1] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露 . 国外甘蔗产业发展现状. 世界农业, 2015, ( 8):147-152
Liu Y Q, Li Y P, Liang W H, Song Q D, Qin X L, Ye L . Current situation of sugarcane industry in the world. World Agric, 2015, ( 8):147-152 (in Chinese with English abstract)
[2] 李明, 田洪春, 黄智刚 . 我国甘蔗产业发展现状研究. 中国糖料, 2017,39(1):67-70
Li M, Tian H C, Huang Z G . Research on the development status of sugarcane industry in China. Sugar Crops Chin, 2017,39(1):67-70 (in Chinese with English abstract)
[3] Hermann S, Aitken K S, Jackson P A, George A W, Piperidis N, Wei X, Kilian A, Detering F . Evidence for second division restitution as the basis for 2 n+n maternal chromosome transmission in a sugarcane cross. Euphytica, 2012,187:359-368
[4] D'Hont A ,Grivet L, Feldmann P, Glaszmann J C, Rao S, Berding N., Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp) by molecular cytogenetics. Mol Gen Genet, 1996,250:405-413
[5] Piperidis G, Piperidis N , D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genom, 2010,284:65-73
[6] Wang H B, Chen P H, Yang Y Q ,D’Hont A, Lu Y H. , Molecular insights into the origin of the brown rust resistance gene Bru1 among Saccharum species. Theor Appl Genet, 2017,130:2431-2443
[7] Ellegren H . Microsatellites: simple sequences with complex evolution. Nat Rev Genet, 2004,5:435-445
doi: 10.1038/nrg1348 pmid: 15153996
[8] Sharma P . Mining microsatellites in eukaryotic genomes. Trends Biotechnol, 2007,25:490-498
doi: 10.1016/j.tibtech.2007.07.013 pmid: 17945369
[9] Smith D N, Devey M E . Occurrence and inheritance of microsatellites in Pinus radia. Genome, 1994,37:977-983
[10] Morgante M, Hanafey H, Powell W . Microsatellites are preferentially associated with nonrepetitive DNA in plant genome. Nat Genet, 2002,30:194-200
doi: 10.1063/1.363554 pmid: 11799393
[11] Klintschar M, Dauber E M, Ricci U, Cerri N, Immel U D, Kleiber M, Mayr W R . Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis, 2004,25:3344-3348
[12] 张增翠, 侯喜林 . SSR分子标记开发策略及评价. 遗传, 2004,26:763-768
Zhang Z C, Hou X L . Strategies for development of SSR molecular markers. Hereditas, 2004,26:763-768
[13] Cordeiro G M, Casu R ,McIntyre C L, Manners J M, Henry R J. , Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and Sorghum. Plant Sci, 2001,160:1115-1123
[14] Aitken K S, Jackson P A ,McIntyre C L. , A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet, 2005,110:789-801
[15] Pan Y B . Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech, 2006,8:246-256
[16] Edmé S J, Glynn N G, Comstock J C . Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Heredity, 2006,97:366-375
[17] Aitken K S, Jackson P A , McIntyre C L. , Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet, 2006,112:1306-1317
[18] Garcia A A, Kido E A, Meza A N, Souza H M, Pinto L R, Pastina M M, Leite C S, Silva J A, Ulian E C, Figueira A, Souza A P . Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet, 2006,112:298-314
[19] Aitken K S, Jackson P A, McIntyre C L. , Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome, 2007,50:742-756
[20] Oliveira K M, Pinto L R, Marconi T G, Mollinari M, Ulian E C, Chabregas S M, Falco M C, Burnquist W, Garcia A A, Souza A P . Characterization of new polymorphic functional markers for sugarcane. Genome, 2009,52:191-209
doi: 10.1139/g08-105 pmid: 19234567
[21] Parida S K, Kalia S K, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma T R, Srivastava P S, Singh N K, Mohapatra T . Informative genomic microsatellite markers for efficient genotyping applications in sugarcane . Theor Appl Genet, 2009,118:327-338
doi: 10.1007/s00122-008-0902-4 pmid: 18946655
[22] 刘新龙, 毛钧, 陆鑫, 马丽 Aitken K S, Jackson P A, 蔡青, 范源洪. , 甘蔗SSR和AFLP分子遗传连锁图谱构建. 作物学报, 2010,36:177-183
Liu X L, Mao J, Lu X, Ma L, Aitken K S, Jackson P A, Cai Q, Fan Y H . Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers. Acta Agron Sin, 2010,36:177-183 (in Chinese with English abstract)
[23] Liu P, Que Y X, Pan Y B . Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing . Sugar Tech, 2011,13:129-136
[24] Andru S, Pan Y B, Thongthawee S, Burner D M, Kimbeng C A . Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’: I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet, 2011,123:77-93
[25] Devarumath R M, Kalwade S B, Kawar P G, Sushir K V . Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers. Sugar Tech, 2012,14:334-344
doi: 10.1007/s12355-012-0168-7
[26] 黄启星, 张雨良, 王俊刚, 伍苏然, 张树珍, 郭安平 . 甘蔗EST-SSR标记的开发和多样性分析. 热带农业科学, 2012,32(12):33-42
Huang Q X, Zhang Y L, Wang J G, Wu S R, Zhang S Z, Guo A P . Data-mining and diversity analysis of EST-SSRs from sugarcane. J Trop Agric, 2012,32(12):33-42 (in Chinese with English abstract)
[27] Singh R K, Jena S N, Khan S, Yadav S, Banarjee N, Raghuvanshi S, Bhardwaj V, Dattamajumder S K, Kapur R, Solomon S, Swapna M, Srivastava S, Tyagi A K . Development, cross- species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene, 2013,524:309-329
[28] Shamshad U H, Kumar P, Singh R K, Verma K S, Bhatt R, Sharma M, Kachhwaha S, Kothari S L . Assessment of functional EST-SSR markers (sugarcane) in cross-species transferability, genetic diversity among Poaceae plants, and bulk segregation analysis. Genet Res Int, 2016,2016:7052323
[29] 刘新龙, 李旭娟, 刘洪博, 马丽, 徐超华, 范源洪 . 云南甘蔗常用亲本资源遗传多样性的SSR分析. 植物遗传资源学报, 2015,6:1214-1222
Liu X L, Li X J, Liu H B, Ma L, Xu C H, Fan Y H . Genetic diversity analysis of Yunnan commonly-used parents by using SSR marker. J Plant Genet Resour, 2015,6:1214-1222 (in Chinese with English abstract)
[30] Liu P, Chandra A, Que Y, Chen P H, Grisham M, White W, Dalley C, Tew T, Pan Y B . Identification of quantitative trait loci controlling sucrose content based on an enriched genetic linkage map of sugarcane (Saccharum spp. hybrids) cultivar LCP 85-384. Euphytica, 2016,207:527-549
[31] Wang J, Roe B, Macmil S, Yu Q, Murray J E, Tang H, Chen C, Najar F, Wiley G, Bowers J ,Van Sluys M A, Rokhsar D S, Hudson M E, Moose S P, Paterson A H, Ming R. , Micro-collinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, 2010,11:261-278
doi: 10.1186/1471-2164-11-261 pmid: 2882929
[32] Murray H G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325
doi: 10.1093/nar/8.19.4321 pmid: 324241
[33] 梅嘉洺, 黄小霞, 王咏, 朱美兰, 林辉, 阳宴清, 卢运海 . 46份菌草种质资源PEPC基因的PCR-RFLP多样性分析. 热带农业科学, 2015,35(11):45-50
Mei J M, Huang X X, Wang Y, Zhu M L, Lin H, Yang Y Q, Lu Y H . Polymorphism analysis of PEPC gene family among 46 Juncao germplasms by PCR-RFLP. Chin J Trop Agric, 2015,35(11):45-50 (in Chinese with English abstract)
[34] Schlötterer C . Evolutionary dynamics of microsatellite DNA. Chromosoma. 2000,109:365-371
doi: 10.1007/s004120000120 pmid: 11072791
[35] Gerard L C, Jeanne J, Samantha J B ,ifeng T ,Roeland E V, Jack A M,Herman V E, Ben V. , Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics, 2008,9:374-386
doi: 10.1186/1471-2105-9-374 pmid: 2562394
[36] Lawson M J, Zhang L . Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol, 2006,7:R14
[37] Zhang Z, Deng Y, Tan J ,Hu S, Yu J, Xue Q., A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res, 2007,14:37-45
doi: 10.1093/dnares/dsm005 pmid: 2779893
[38] Blair M W, Buendia H F, Giraldo M C, Metais I, Peltier D . Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2008,118:91-103
[39] Iniguez F L, Voort A V, Osborn T C . Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet, 2008,117:977-985
[40] Yonemaru J I, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M . Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum ( Sorghum bicolor(L.) Moench). DNA Res, 2009,16:187-193
[41] Song Q, Jia G, Zhu Y, Grant D, Nelson R T, Wang E Y, Hyten D L, Cregan P B . Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR1.0) in Soybean. Crop Sci, 2010,50:1950-1960
[42] 郑燕, 张耿, 吴为人 . 禾本科植物微卫星序列的特征分析和比较. 基因组学与应用生物学, 2011,30:513-520
Zheng Y, Zhang G, Wu W R . Characterization and comparison of microsatellites in gramineae. Genom Appl Biol, 2011,30:513-520 (in Chinese with English abstract)
[43] 仪泽会, 卢有飞, 郭晓芹, 惠麦侠, 张鲁刚, 张明科 . 大白菜简单序列重复(SSR)和插入/缺失(InDel)标记的开发及通用性分析. 农业生物技术学报, 2012,12:1398-1406
Yi Z H, Lu Y F, Guo X Q, Hui M X, Zhang L G, Zhang M K . Development of simple sequence repeat (SSR) and insertion/deletion (InDel) markers in Chinese cabbage (Brassica rapa ssp. pekinesis) and analysis of their transferability.. J Agric Biotechnol, 2012,12:1398-1406 (in Chinese with English abstract)
[44] 原志敏 . 玉米全基因组SSRs分子标记开发与特征分析. 四川农业大学硕士学位论文, 四川雅安, 2013
Yuan Z M . Development and Characterization of SSR Markers Providing Genome-wide Coverage and High Resolution in Maize. MS Thesis of Sichun Agriculture University, Ya’an, China, 2013 (in Chinese with English abstract)
[45] 曹恒春, 王毅, 黄莉莎, 王玉军, 于元杰, 杨龙 . 可可全基因组SSR标记的开发及分析. 山东农业大学学报(自然科学版), 2013,44:340-344
Cao H C, Wang Y, Huang L S, Wang Y J, Yu Y J, Yang L . Large-scale development of SSR markers in the genome of cacao . J Shandong Agric Univ(Natural Science Edition), 2013,44:340-344 (in Chinese with English abstract)
[46] Wei X, Wang L, Zhang Y, Qi X, Wang X, Ding X, Zhang J, Zhang X . Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey. Molecules, 2014,19:5150-5162
[47] 童治军, 焦芳婵, 肖炳光 . 普通烟草及其祖先种基因组SSR位点分析. 中国农业科学, 2015,48:2108-2117
Tong Z J, Jiao F C, Xiao B G . Analysis of SSR loci in Nicotina tabacum genome and its two ancestral species genome. Sci Agric Sin, 2015,48:2108-2117 (in Chinese with English abstract)
[48] Song X, Ge T, Li Y, Hou X . Genome-wide identification of SSR and SNP markers from the non-heading Chinese cabbage for comparative genomic analyses. BMC Genomics, 2015,16:328
[49] Motalebipour E Z, Kafkas S, Khodaeiaminjan M, Çoban N, Gözel H . Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species. BMC Genomics, 2016,17:998
[50] Gil J, Um Y, Kim S, Kim O T, Koo S C, Reddy C S, Kim S C, Hong C P, Park S G, Kim H B, Lee D H, Jeong B H, Chung J W, Lee Y . Development of genome-wide SSR markers from Angelica gigas Nakai using next generation sequencing. Genes(Basel), 2017,8:E238
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[5] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[6] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[7] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[8] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[9] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[10] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[11] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[12] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[13] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[14] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[15] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!