Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (10): 1517-1527.doi: 10.3724/SP.J.1006.2018.01517

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Grain Filling and Dehydration Characteristics of Summer Maize Hybrids Differing in Maturities and Effect of Plant Density

Ze-Hua WAN,Bai-Zhao REN,Bin ZHAO,Peng LIU,Shu-Ting DONG,Ji-Wang ZHANG()   

  1. State Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2018-01-30 Accepted:2018-07-20 Online:2018-10-10 Published:2018-07-31
  • Contact: Ji-Wang ZHANG E-mail:jwzhang@sdau.edu.cn
  • Supported by:
    This study was supported by the State Key Research and Development Program “Food Production Enhancement and Efficiency Innovation” Key Special Project(SQ2017YFNC050063);the China Agriculture Research System(CARS-02-18)

Abstract:

Exploring grain-filling and dehydration characteristics of summer maize hybrids differing in maturities and the regulation function of plant density, could provide theoretical and technical reference for the mechanized grain harvest in The Yellow- Huaihe-Haihe Rivers plain region. A field experiment was conducted from 2016 to 2017, using early hybrids Denghai 518 (DH518), Hengzao 8 (HZ8) and middle-late hybrids Zhengdan 958 (ZD958), Denghai 605 (DH605) with three plant densities of 60 000, 75 000, and 90 000 plants ha -1. The grain-filling duration was shorter and the yield was lower in early hybrids DH518, HZ8 than in middle-late hybrids ZD958, DH605. Grain moisture content of the four hybrids at physiological maturity had no significant correlation with their growth period duration. Compared with middle-late hybrids, grain dehydration rate of early hybrids at late growth stage was faster. In 2016 and 2017, mean value of grain dehydration rate from the date reaching maximum grain water content to physiological maturity of DH518 and HZ8 was 0.015% °C -1 and 0.014% °C -1 higher than that of ZD958 and DH605 respectively. The grain dehydration rate had no significant correlation with filling rate, the moisture content in grain at late growth stage was positively correlated with that in stem, sheath and leaf at P < 0.05, and with that in bract and cob at P < 0.01. With increasing plant density, grain-filling duration of different summer maize hybrids become shorter, average filling rate reduced, and grain moisture content at physiological maturity reduced. Reasonably increasing plant density could significantly improve the yield of summer maize hybrids differing in maturities.

Key words: summer maize, growth period, grain-filling, grain dehydration, yield, plant density

Table 1

Variance analysis of yield of summer maize hybrids differing in maturities"

变异来源
Source of variation
自由度
Degrees of freedom
平方和
Sum of squares
均方
Mean square
F
F-value
年份 Year (Y) 1 208668.484 208668.484 2.422
种植密度 Plant density (D) 2 61116365.83 30558182.91 354.66**
品种 Hybrid (H) 3 36514182.24 12171394.08 141.262**
Y×D 2 180020.645 90010.322 1.045
Y×H 3 3216329.267 1072109.756 12.443**
D×H 6 94103.282 15683.88 0.182
Y×D×H 6 221641.587 36940.264 0.429
误差 Error 48 4135772.023 86161.917
总变异 Total variation 72 10710000000

Fig. 1

Yield of summer maize hybrids differing in maturities Bars superscripted by a different small letter within the same plant density are significantly different at the 0.05 probability level. DH518: Denghai 518; HZ8: Hengzao 8; ZD958: Zhengdan 958; DH605: Denghai 605."

Table 2

Growth procession and effective accumulated temperature of summer maize hybrids differing in maturities"

品种
Hybrid
播种期
Sowing
(M/D)
吐丝期
R1
(M/D)
完熟期
R6
(M/D)
吐丝前天数
Days before
silking (d)
吐丝前
有效积温
EATBS (°C)
吐丝后天数
Days after
silking (d)
吐丝后
有效积温
EATAS (°C)
生育期
Total growth
period (d)
总有效积温
TEAT (°C)
2016
DH518 6/11 7/28 9/23 47 810.4 58 916.6 105 1727.0
HZ8 6/11 7/29 9/20 48 829.9 54 863.1 102 1693.0
ZD958 6/11 7/31 10/2 50 871.1 64 951.2 114 1822.3
DH605 6/11 8/1 10/6 51 890.7 67 975.9 118 1866.6
2017
DH518 6/10 7/25 9/21 45 806.9 58 933.3 103 1740.1
HZ8 6/10 7/25 9/20 45 806.9 57 920.1 102 1727.0
ZD958 6/10 7/30 9/30 50 890.5 62 963.2 112 1853.7
DH605 6/10 7/31 10/1 51 904.6 62 955.8 113 1860.5

Table 3

Filling rate of summer maize hybrids differing in maturities"

品种
Hybrid
种植密度
Plant density
(plants hm-2)
灌浆期有效积温
EATFP (°C)
生理成熟期百粒重
100-KDWPM (g)
平均灌浆速率
Average filling
rate (g °C-1)
籽粒最大
含水率的百粒重
100-KDWMWC (g)
籽粒最大含水率
到成熟的灌浆速率
FRMWCM (g °C-1 )
2016
DH518 60000 921.5 32.72 b 0.036 a 12.93 0.041
75000 916.6 30.05 de 0.033 bc 11.58 0.037
90000 916.6 29.23 ef 0.032 bc 10.34 0.038
HZ8 60000 863.1 27.87 fg 0.032 bc 11.98 0.034
75000 863.1 27.45 g 0.032 bc 11.60 0.034
90000 873.2 27.68 fg 0.032 bc 10.03 0.037
ZD958 60000 951.2 32.01 bc 0.034 b 19.51 0.033
75000 951.2 31.02 cd 0.033 bc 17.83 0.035
90000 943.4 29.57 de 0.031 c 15.33 0.037
DH605 60000 986.8 35.76 a 0.036 a 18.86 0.041
75000 975.9 35.42 a 0.036 a 17.17 0.043
90000 959.7 34.89 a 0.036 a 16.91 0.043
2017
DH518 60000 933.3 32.01 d 0.034 e 13.30 0.040
75000 933.3 30.86 def 0.033 e 12.20 0.040
90000 927.7 31.35 de 0.034 e 12.00 0.040
HZ8 60000 920.1 30.56 ef 0.033 e 12.98 0.039
75000 920.1 29.11 g 0.032 f 12.53 0.036
90000 895.0 29.69 fg 0.033 e 13.10 0.035
ZD958 60000 963.2 36.95 ab 0.038 bc 20.90 0.038
75000 963.2 34.88 c 0.036 d 20.60 0.034
90000 955.8 32.15 d 0.034 e 17.70 0.034
DH605 60000 970.0 38.21 a 0.039 ab 21.70 0.039
75000 955.8 38.12 a 0.040 a 20.80 0.041
90000 962.6 36.03 bc 0.037 cd 18.10 0.041

Table 4

Variance analysis of kernel moisture content at physiological maturity"

变异来源
Source of variation
自由度
Degrees of freedom
平方和
Sum of squares
均方
Mean square
F
F-value
年份 Year (Y) 1 84.338 84.338 94.462**
种植密度 Plant density (D) 2 23.157 11.579 12.969**
品种 Hybrid (H) 3 71.678 23.893 26.761**
Y×D 2 1.649 0.825 0.924
Y×H 3 23.903 7.968 8.924**
D×H 6 9.189 1.532 1.715
Y×D×H 6 14.450 2.408 2.698*
误差 Error 48 42.855 0.893
总变异 Total variation 72 57686.247

Fig. 2

Grain moisture content at physiological maturity of summer maize hybrids differing in maturities Bars superscripted by a different small letter within the same plant density are significantly different at the 0.05 probability level. DH518: Denghai 518; HZ8: Hengzao 8; ZD958: Zhengdan 958; DH605: Denghai 605."

Table 5

Dehydration rate of summer maize hybrids differing in maturities"

品种
Hybrid
种植密度
Plant density
(plants hm-2)
吐丝后
有效积温
EATAS (°C)
吐丝到籽粒最大含水量时的有效积温
EATSMGWC (°C)
籽粒最大含水量
时的含水率
GMCMWC (%)
生理成熟时的
籽粒含水率
GMCPM (%)
籽粒最大含水率时到
成熟时的脱水速率
DRMGWCPM (% °C-1)
总脱水速率
TDR
(% °C-1)
2016
DH518 60000 921.5 437.3 60.7 30.1 0.063 b 0.065 b
75000 916.6 419.2 59.8 29.5 0.061 bc 0.066 b
90000 916.6 419.2 59.9 29.3 0.062 bc 0.066 b
HZ8 60000 863.1 399.7 59.1 27.4 0.068 a 0.073 a
75000 863.1 399.7 60.6 27.2 0.072 a 0.073 a
90000 873.2 399.7 60.1 26.8 0.070 a 0.072 a
ZD958 60000 951.2 574.0 49.6 31.1 0.049 fg 0.062 cd
75000 951.2 574.0 48.6 30.4 0.048 g 0.063 cd
90000 943.4 554.1 50.5 31.0 0.050 fg 0.063 cd
DH605 60000 986.8 574.0 53.5 31.6 0.053 ef 0.059 e
75000 975.9 554.4 52.5 29.1 0.056 de 0.062 d
90000 959.7 538.2 52.7 28.4 0.058 cd 0.064 bc
2017
DH518 60000 933.3 463.6 58.6 27.9 0.065 b 0.067 d
75000 933.3 463.6 59.7 28.2 0.067 bc 0.066 de
90000 927.7 444.0 58.9 25.9 0.068 bc 0.069 b
HZ8 60000 920.1 463.6 58.5 28.1 0.067 bc 0.067 cd
75000 920.1 463.6 58.8 26.9 0.070 a 0.069 bc
90000 895.0 425.4 56.9 25.2 0.067 bc 0.072 a
ZD958 60000 963.2 544.3 50.8 29.6 0.051 e 0.063 g
75000 963.2 544.3 49.0 27.5 0.051 e 0.065 ef
90000 955.8 530.2 48.5 28.5 0.047 f 0.064 f
DH605 60000 970.0 544.3 50.5 26.1 0.057 d 0.066 def
75000 955.8 530.2 50.8 26.3 0.058 d 0.067 d
90000 962.6 530.2 50.0 25.7 0.056 d 0.067 d

Table 6

Correlation analysis of dehydration parameters and filling parameters (2016-2017)"

灌浆期
有效积温
EATFP (°C)
总脱水速率
TDR
(% °C-1)
籽粒最大含水率到成熟的脱水速率
DRDRMGWCPM
(% °C-1)
籽粒最大含水率到成熟的灌浆速率
FRDRMGWCPM
(g °C-1)
平均灌浆速率
Average filling rate
(g °C-1)
生理成熟期
百粒重
100-KDWPM (g)
灌浆期有效积温EATFP (°C) 1 -0.895** -0.784* 0.505 0.637 0.817*
总脱水速率TDR (% °C-1) 1 0.842** -0.402 -0.356 -0.555
籽粒最大含水率到成熟的脱水速率
DRDRMGWCPM (% °C-1)
1 -0.024 -0.466 -0.600
籽粒最大含水率到成熟的灌浆速率
FRDRMGWCPM (g °C-1)
1 0.554 0.586
平均灌浆速率
Average filling rate (g °C-1)
1 0.962**
生理成熟期百粒重100-KDWPM (g) 1

Table 7

Correlation analysis of moisture content change in grain and other organs from 25 days after silking to maturity under planting density of 75 000 plants hm-2"

年份
Year
品种
Hybrid
茎鞘
Stem and sheath
叶片
Leaf
苞叶
Bract
穗轴
Cob
2016 DH518 0.904* 0.961** 0.985** 0.959**
HZ8 -0.285 0.844 0.854 0.763
ZD958 0.918* 0.933* 0.996** 0.977**
DH605 0.868* 0.874* 0.936** 0.901**
2017 DH518 0.968** 0.806* 0.923** 0.877**
HZ8 0.786* 0.845* 0.947** 0.944**
ZD958 0.777* 0.799* 0.969** 0.990**
DH605 0.908* 0.869** 0.970** 0.922**
[1] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50:2018-2026
Wang K R, Li S K . Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract)
[2] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆 . 影响玉米机械收粒质量因素的分析. 作物杂志, 2013, ( 4):116-119
Liu F H, Wang K R, Li J, Wang X M, Sun Y L, Chen Y S, Wang Y H, Han D S, Li S K . Factors affecting corn mechanically harvesting grain quality. Crops, 2013, ( 4):116-119 (in Chinese with English abstract)
[3] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆 . 黄淮海夏玉米子粒机械收获研究初报. 作物杂志, 2014, ( 2):76-79
Xie R Z, Lei X P, Wang K R, Guo Y Q, Chai Z W, Hou P, Li S K . Research on corn mechanically harvesting grain quality in Huanghuaihai Plain. Crops, 2014, ( 2):76-79 (in Chinese with English abstract)
[4] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50:2036-2043
doi: 10.3864/j.issn.0578-1752.2017.11.009
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu Z W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.009
[5] 李少昆 . 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报: 自然科学版, 2017,35:265-272
doi: 10.13880/j.cnki.65-1174/n.2017.03.001
Li S K . Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci), 2017,35:265-272 (in Chinese with English abstract)
doi: 10.13880/j.cnki.65-1174/n.2017.03.001
[6] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50:2027-2035
doi: 10.3864/j.issn.0578-1752.2017.11.008
Wang K R, Li S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017,50:2027-2035 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.008
[7] 李璐璐, 谢瑞芝, 范盼盼, 雷晓鹏, 王克如, 侯鹏, 李少昆 . 郑单958与先玉335子粒脱水特征研究. 玉米科学, 2016,24(2):57-61
Li L L, Xie R Z, Fan P P, Lei X P, Wang K R, Hou P, Li S K . Study on dehydration in kernel between Zhengdan 958 and Xianyu 335. J Maize Sci, 2016,24(2):57-61 (in Chinese with English abstract)
[8] 张文杰, 王永宏, 王克如, 赵健, 赵如浪, 李少昆 . 不同玉米品种子粒脱水速率研究. 作物杂志, 2016, ( 1):76-81
doi: 10.16035/j.issn.1001-7283.2016.01.014
Zhang W J, Wang Y H, Wang K R, Zhao J, Zhao R L, Li S K . Grain dehydration rate of different maize varieties. Crops, 2016, ( 1):76-81 (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2016.01.014
[9] Brooking R . Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Res, 1990,23:55-68
doi: 10.1016/0378-4290(90)90097-U
[10] Brenda L, Gambín Borrás L, María E, Otegui E . Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2007,101:1-9
doi: 10.1016/j.fcr.2006.09.001
[11] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, ( 2):88-92
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai region. Crops, 2017, ( 2):88-92 (in Chinese with English abstract)
[12] 李淑芳, 张春宵, 路明, 刘文国, 李晓辉 . 玉米籽粒自然脱水速率研究进展. 分子植物育种, 2014,12:825-829
Li S F, Zhang C X, Lu M, Liu W G, Li X H . Research development of kernel dehydration rate in maize. Mol Plant Breed, 2014,12:825-829 (in Chinese with English abstract)
[13] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春 . 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014,47:3557-3565
Wang X H, Zhang L, Liu S L, Cao Y Q, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C . Grain filling characteristics of maize hybrids differing in maturities. Sci Agric Sin, 2014,47:3557-3565 (in Chinese with English abstract)
[14] 魏玉君 . 夏玉米光温需求与籽粒灌浆特性的研究. 山东农业大学硕士学位论文, 山东泰安, 2014
Wei Y J . Study on Requirement of Accumulated Temperature and Grain-filling Characteristics in Summer Maize. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2014 ( in Chinese with English abstract)
[15] 王祥宇, 魏珊珊, 董树亭, 刘鹏, 张吉旺, 赵斌 . 种植密度对熟期不同夏玉米群体光合性能及产量的影响. 玉米科学, 2015,23(1):134-138
Wang X Y, Wei S S, Dong S T, Liu P, Zhang J W, Zhao B . Effects of planting densities on canopy apparent photosynthesis characteristics of summer maize in different maturity periods. J Maize Sci, 2015,23(1):134-138 (in Chinese with English abstract)
[16] 曹胜彪, 张吉旺, 杨今胜, 刘伟, 董树亭, 刘鹏, 赵斌 . 密度对高产夏玉米产量和氮素利用效率的影响. 玉米科学, 2012,20(5):106-110
Cao S B, Zhang J W, Yang J S, Liu W, Dong S T, Liu P, Zhao B . Effects of plant density on grain yield and nitrogen use efficiency of the summer maize with high yield. J Maize Sci, 2012,20(5):106-110 (in Chinese with English abstract)
[17] 刘伟 . 种植密度对高产夏玉米产量及生理特性影响的研究. 山东农业大学硕士学位论文, 山东泰安, 2011
doi: 10.7666/d.d143656
Liu W . Effects of Plant Density on Grain Yield and Physiological Characteristics of High-yield Summer Maize (Zea mays L.). MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2011 ( in Chinese with English abstract)
doi: 10.7666/d.d143656
[18] Widdicombe W D, Thelen K D . Row width and plant density effects on corn grain production in the Northern corn belt. Agron J, 2002,94:1020-1023
doi: 10.2134/agronj2002.1020
[19] 王利锋, 唐保军, 王振华, 李会勇 . 不同类型玉米品种间籽粒脱水速率相关分析. 玉米科学, 2017,8(4):37-38
Wang L F, Tang B J, Wang Z H, Li H Y . Study on seed dehydration rate of different maize varieties. J Maize Sci, 2017,8(4):37-38 (in Chinese with English abstract)
[20] 严定春, 朱艳, 曹卫星 . 水稻栽培适宜品种选择的知识模型. 南京农业大学学报, 2004,27(4):20-25
Yan D C, Zhu Y, Cao W X . A knowledge model for selection of suitable variety in rice production. J Nanjing Agric Univ, 2004,27(4):20-25 (in Chinese with English abstract)
[21] 金益, 王振华, 张永林, 王殊华, 王云生 . 玉米杂交种蜡熟后籽粒自然脱水速率差异分析. 东北农业大学学报, 1997,28(1):29-32
Jin Y, Wang Z H, Zhang Y L, Wang S H, Wang Y S . Difference analysis on the natural dry rate of kernel after wax ripening in maize hybrids. J Northeast Agric Univ, 1997,28(1):29-32 (in Chinese with English abstract)
[22] 荆彦平 . 小麦和玉米颖果的生长及胚乳细胞的发育. 扬州大学硕士学位论文, 江苏扬州, 2014
doi: 10.7666/d.Y2632983
Jing Y P . The Caryopsis Growth and the Endosperm Cell Development in Wheat and Maize. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2014 ( in Chinese with English abstract)
doi: 10.7666/d.Y2632983
[23] 顾世梁, 朱庆森, 杨建昌, 彭少兵 . 不同水稻材料籽粒灌浆特性的分析. 作物学报, 2001,27:7-14
doi: 10.3321/j.issn:0496-3490.2001.01.002
Gu S L, Zhu Q C, Yang J C, Peng S B . Analysis on grain fil1ing characteristics for different rice types. Acta Agron Sin, 2001,27:7-14 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2001.01.002
[24] 卫勇强, 雷晓兵, 梁晓伟, 李林, 赵保献, 陈润玲, 赵合林 . 不同夏玉米品种籽粒自然脱水速率的研究. 江苏农业科学, 2011,39(6):167-168
doi: 10.3969/j.issn.1002-1302.2011.06.063
Wei Y Q, Lei X B, Liang X W, Li L, Zhao B X, Chen R L, Zhao H L . Study on natural grain dehydration rate of different summer maize varieties. Jiangsu Agric Sci, 2011,39(6):167-168 (in Chinese)
doi: 10.3969/j.issn.1002-1302.2011.06.063
[25] 申琳 . 夏玉米籽粒灌浆与籽粒含水率的关系及籽粒发育过程的分期. 北京农业科学, 1998,16(5):6-9
Shen L . The relationship of grain filling and grain moisture content and the stage of grain development in summer maize. Beijing Agric Sci, 1998,16(5):6-9 (in Chinese)
[26] 李德新, 宫秀杰, 钱春荣 . 玉米籽粒灌浆及脱水速率品种差异与相关分析. 中国农学通报, 2011,27(27):92-97
Li D X, Gong X J, Qian C R . Difference and correlation analysis of grain milking rate and grain dehydrating rate on maize. Chin Agric Sci Bull, 2011,27(27):92-97 (in Chinese with English abstract)
[27] 孙全平, 刘国一, 唐亚伟, 侯亚红, 李雪, 尼玛扎西 . 密度、播期和施肥对西藏不同青稞品种籽粒灌浆特性影响. 中国农学通报, 2016,32(21):67-74
Sun Q P, Liu G Y, Tang Y W, Hou Y H, Li X , Ni-Ma-Zha-Xi. Effects of planting density, sowing date and fertilizer application on grain-filling characteristics of different highland barley varieties in Tibet. Chin Agric Sci Bull, 2016,32(21):67-74 (in Chinese with English abstract)
[28] 冯鹏, 申晓慧, 郑海燕, 张华, 李增杰, 杨海宽, 李明顺 . 种植密度对玉米籽粒灌浆及脱水特性的影响. 中国农学通报, 2014,30(6):92-100
Feng P, Shen X H, Zheng H Y, Zhang H, Li Z J, Yang H K, Li M S . Effects of planting density on kernel filling and dehydration characteristics for maize hybrids. Chin Agric Sci Bull, 2014,30(6):92-100 (in Chinese with English abstract)
[29] 谭福忠, 韩翠波, 邹双利, 刘振江, 籍依安 . 极早熟玉米品种籽粒脱水特性的初步研究. 中国农学通报, 2008,24(7):161-168
Tan F Z, Han C B, Zou S L, Liu Z J, Ji Y A . Elementary study on kernel dry-down traits in earliest-maturity maize hybrid. Chin Agric Sci Bull, 2008,24(7):161-168 (in Chinese with English abstract)
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!