Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (5): 764-776.doi: 10.3724/SP.J.1006.2019.84014


Effects of top dressing with reduced nitrogen fertilizer and density enhancement on water use efficiency and growth of potatoes planted in mini-ditch on ridges with plastic mulching

Xian-Feng YU1,Xu-Cheng ZHANG1,*(),Yan-Jie FANG1,Guang-Rong CHEN1,Hong-Li WANG1,Hui-Zhi HOU1,Yi-Fan MA1,Ji-Jun ZHAO2   

  1. 1 Institute of Dryland Farming, Gansu Academy of Agricultural Sciences / Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070, Gansu, China
    2 Gansu Agriculture Environment Protection Station, Lanzhou 730000, Gansu, China
  • Received:2018-01-30 Accepted:2018-12-24 Online:2019-05-12 Published:2019-01-07
  • Contact: Xu-Cheng ZHANG E-mail:gszhangxuch@163.com
  • Supported by:
    The study was supported by the National Science and Technology Research Projects of China(2015BAD22B04);the Agricultural Science and Technology Innovation Plan of Gansu Academy of Agricultural Sciences(2017GAAS27);the Key R&D Projects in Gansu Province(18YF1WA092)


The optimization of ridge-furrow construction, plant density and fertilizer application are three promising ways to increase rainwater use efficiency, crop yield and water use efficiency. A long-term field experiment was carried out in semi-arid area of northwestern China from 2015 to 2017, using potatoes planted in mini-ditch on ridges with plastic mulching, to explore the effects of fertilizer application and plant density on soil temperature, water consumption at different growth stages, yield and water use efficiency. Two plant densities (low density of 49,500 plants ha -1, and high density of 64,500 plants ha -1) and three fertilization methods (traditional fertilizer application, PM; reduced chemical fertilizer dressing, PMN; and organic fertilizer substitution, PMO) were set up as treatments, using randomized block design with three replications. The high density did not affect soil temperature, SPAD values and yield significantly, but lowered water consumption in pre-flowering stage, above-ground biomass per plant, and water use efficiency. However, LAI and water consumption were improved in post-flowering stage. Compared with low density treatments, LAI in high density increased by 3.64%-15.01%, and water consumption in tuber bulking period increased by 6.50%-48.52%. Both PMN and PMO increased soil temperature in pre-flowering stage, potato foliar SPAD and LAI from squaring to tuber bulking stage, compared with PM. For example, LAI increased by 10.42%-44.26% at flowering stage. PMN and PMO decreased water consumption during pre-flowering period, but increased it during post-flowering period, resulting in a 6.95%-49.85% increment in aboveground biomass at bulking stage. On average, PMN increased potato tuber yield and WUE under low density by 9.96%-20.87% and 13.64%-17.61%, 5.46%-20.81% and 13.25%-45.24%, respectively, compared with PM and PMO. Consequently, the increment of plant density did not affect potato tuber yield and WUE. However, PMN and PMO promoted potato water utilization in post-flowering period and increased LAI, resulting in significant increment of potato tuber yield and WUE, showing an efficient way for fertilization management of potato in semiarid loess plateau of northwestern China.

Key words: reduced chemical nitrogen fertilizer dressing, density enhancement, mini-ditch planting on ridges with plastic mulching, potato, yield, water use efficiency

Fig. 1

Schematic diagram of potato ridges and furrows planting with plastic mulching"

Table 1

The treatments of experiment"

Fertilizer rate
(plant hm-2)
Fertilizer type and dosage
Total fertilizer quantity
Traditional fertilizer
49500 有机肥15000 kg hm-2; 化肥纯N: 180 kg hm-2, P2O5: 105 kg hm-2, 全部基施。
Organic manure 15000 kg hm-2; N: 180 kg hm-2, P2O5: 105 kg hm-2, applied before sowing.
N: 255 kg hm-2, P2O5: 157.5 kg hm-2, K2O: 60 kg hm-2
Reduced chemical fertilizer dressing
49500 有机肥15000 kg hm-2; 化肥纯N: 135 kg hm-2, P2O5: 73.5 kg hm-2, K2O: 30 kg hm-2。基:追=6:4, 花期追肥。
Organic manure 15000 kg hm-2; N: 135 kg hm-2, P2O5: 73.5 kg hm-2, the ratio between base and dressing fertilizer was 6:4, flowering fertilizer.
N: 210 kg hm-2, P2O5: 126 kg hm-2, K2O: 90 kg hm-2
Organic manure substitution
49500 有机肥30000 kg hm-2; 化肥纯N: 90 kg hm-2, P2O5: 52.5 kg hm-2, K2O: 22.5 kg hm-2。基:追=6:4, 花期追肥。
Organic manure 30000 kg hm-2; N: 90 kg hm-2, P2O5: 52.5 kg hm-2, K2O: 22.5 kg hm-2, the ratio between base and dressing fertilizer was 6:4, flowering fertilizer.
N: 240 kg hm-2, P2O5: 157.5 kg hm-2, K2O: 142.5 kg hm-2

Fig. 2

Precipitation and average air temperature in potato growth stage from 2015 to 2017"

Table 2

Effects of fertilization patterns and plant density on soil temperature (℃)"

块茎膨大期Bulking 淀粉积累期Accumulating 收获期Maturing
2015 传统施肥低密度PML 15.5 ab 19.6 b 19.9 a 18.2 a 22.5 a 15.8 ab
减量追施低密度PMNL 15.8 a 20.5 ab 20.7 a 19.1 a 21.7 a 15.4 b
有机肥替代低密度PMOL 15.5 ab 20.4 ab 20.5 a 18.5 a 21.8 a 16.5 ab
传统施肥高密度PMH 15.0 c 19.6 b 19.9 a 18.8 a 22.2 a 16.7 ab
减量追施高密度PMNH 15.6 a 21.0 a 20.3 a 18.6 a 22.9 a 17.2 a
有机肥替代高密度PMOH 15.1 bc 19.9 b 20.1 a 18.4 a 20.9 a 16.0 ab
块茎膨大期Bulking 淀粉积累期Accumulating 收获期Maturing
2016 传统施肥低密度PML 19.8 c 23.5 c 21.6 d 25.0 e 24.1 c 13.2 ab
减量追施低密度PMNL 20.9 d 23.0 d 22.4 cd 26.5 c 24.8 b 12.4 b
有机肥替代低密度PMOL 21.4 b 24.1 b 23.3 b 28.0 a 25.9 a 13.7 a
传统施肥高密度PMH 22.1 a 25.7 a 24.9 a 27.5 b 25.7 a 13.8 a
减量追施高密度PMNH 20.2 b 24.1 b 22.6 bc 25.8 d 24.6 b 12.7 b
有机肥替代高密度PMOH 20.9 b 24.1 b 22.4 cd 25.9 d 24.6 b 13.7 a
2017 传统施肥低密度PML 20.1 c 21.3 a 25.2 ab 25.3 a 23.0 a 17.0 a
减量追施低密度PMNL 20.8 abc 22.6 a 26.0 a 25.6 a 25.0 a 17.5 a
有机肥替代低密度PMOL 21.2 ab 22.0 a 26.0 a 25.7 a 24.0 a 17.8 a
传统施肥高密度PMH 20.3 abc 22.5 a 25.4 ab 25.3 a 23.8 a 17.4 a
减量追施高密度PMNH 21.6 a 23.0 a 25.6 ab 25.4 a 23.6 a 17.2 a
有机肥替代高密度PMOH 20.7 bc 21.8 a 24.3 b 24.1 a 22.9 a 17.5 a

Table 3

Effects of fertilization patterns and sowing density on leaf SPAD"

2015 传统施肥低密度PML 38.4 a 45.2 a 72.0 b 78.1 c 52.6 a
减量追施低密度PMNL 34.6 a 42.6 a 57.6 c 85.9 b 50.2 a
有机肥替代低密度PMOL 32.2 a 45.4 a 86.2 a 96.3 a 46.2 a
传统施肥高密度PMH 35.6 a 40.4 a 77.1 b 76.7 c 51.5 a
减量追施高密度PMNH 34.2 a 42.4 a 87.0 a 72.6 c 50.8 a
有机肥替代高密度PMOH 33.5 a 41.0 a 87.9 a 85.0 b 52.1 a
2016 传统施肥低密度PML 51.0 a 75.0 ab 52.0 a 55.2 a 57.3 a
减量追施低密度PMNL 50.6 a 74.5 ab 51.4 a 54.1 a 54.6 a
有机肥替代低密度PMOL 49.2 a 79.7 ab 52.3 a 55.3 a 54.9 a
传统施肥高密度PMH 47.6 a 69.4 b 51.2 a 55.1 a 58.4 a
减量追施高密度PMNH 51.2 a 85.9 a 50.9 a 55.6 a 56.4 a
有机肥替代高密度PMOH 48.8 a 85.9 a 52.5 a 55.3 a 58.4 a
2017 传统施肥低密度PML 53.9 a 54.6 a 56.3 a 55.9 a 52.7 a
减量追施低密度PMNL 54.5 a 56.0 a 53.5 a 57.9 a 54.2 a
有机肥替代低密度PMOL 54.7 a 54.8 a 57.6 a 57.5 a 54.2 a
传统施肥高密度PMH 53.8 a 55.6 a 55.1 a 59.4 a 51.9 a
减量追施高密度PMNH 56.5 a 53.7 a 55.1 a 54.2 a 50.2 a
有机肥替代高密度PMOH 56.1 a 54.4 a 54.1 a 60.0 a 50.2 a

Table 4

Effects of fertilization patterns and sowing density on potatoes LAI"

2015 传统施肥低密度PML 3.15 c 3.86 c 4.39 b 3.29 c
减量追施低密度PMNL 4.03 ab 4.60 b 5.03 ab 4.53 ab
有机肥替代低密度PMOL 3.58 bc 4.64 b 4.67 b 4.30 b
传统施肥高密度PMH 3.60 bc 3.93 c 4.88 ab 3.58 c
减量追施高密度PMNH 4.30 a 5.64 a 5.79 a 4.79 a
有机肥替代高密度PMOH 3.92 ab 4.75 b 5.26 ab 4.26 b
2016 传统施肥低密度PML 0.80 d 1.20 b 3.28 a 2.45 b
减量追施低密度PMNL 0.91 d 1.33 b 3.54 a 2.79 ab
有机肥替代低密度PMOL 1.13 c 1.52 b 3.84 a 2.49 b
传统施肥高密度PMH 1.43 b 1.67 b 3.35 a 2.09 b
减量追施高密度PMNH 1.77 a 2.32 a 3.70 a 2.36 b
有机肥替代高密度PMOH 1.88 a 2.24 a 3.83 a 3.41 a
2017 传统施肥低密度PML 1.61 d 2.44 c 4.28 a 3.45 b
减量追施低密度PMNL 1.81 c 3.33 b 4.54 a 3.84 ab
有机肥替代低密度PMOL 2.13 b 3.52 ab 4.59 a 3.49 b
传统施肥高密度PMH 1.93 c 2.37 c 4.35 a 3.19 b
减量追施高密度PMNH 2.82 a 3.32 b 4.70 a 3.36 b
有机肥替代高密度PMOH 2.88 a 3.69 a 4.83 a 4.41 a

Fig. 3

Effects of fertilization patterns and sowing density on dry matter accumulation PM: traditional fertilizer; PMN: reduced chemical fertilizer dressing; PMO: organic manure substitution."

Table 5

Analysis of variance for effects of years, density, and fertilization on ET"

Source of variation
Sum of squares
Mean square
年份Year (A) 10334.39 2 5167.20 84.4341 0.0001
密度Density (B) 494.95 1 494.95 8.0878 0.0075
施肥Fertilization (C) 6078.17 2 2039.08 49.6599 0.0001
A×B 299.21 2 149.60 2.4445 0.1019
A×C 12043.23 4 3010.81 49.1978 0.0001
B×C 2245.68 2 1122.84 18.3477 0.0001
A×B×C 2398.56 4 599.65 9.7984 0.0001

Fig. 4

Effects of fertilization patterns and sowing density on stage water consumption PML: traditional fertilizer with low density; PMNL: reduced chemical fertilizer dressing with low density; PMOL: organic manure substitution with low density; PMH: traditional fertilizer with high density; PMNH: reduced chemical fertilizer dressing with high density; PMOH: organic manure substitution with high density."

Table 6

Effects of fertilization patterns and sowing density on stage water consumption"

传统施肥低密度PML 减量追施低密度PMNL 有机肥替代低密度PMOL 传统施肥高密度PMH 减量追施高密度PMNH 有机肥替代高密度PMOH
2015 289.7 b 310.6 ab 304.5 ab 311.1 ab 320.2 a 283.0 b
2016 332.7 abc 329.7 bc 348.7 ab 318.7 c 344.3 ab 351.1 a
2017 284.9 e 284.9 e 368.2 a 322.4 c 303.4 d 349.7 b

Table 7

Analysis of variance for effects of year, density, and fertilizer on yield and WUE"

Source of variation
Sum of squares
Mean square
产量 年份Year (A) 2 1716451184 858225592 235.0364 0.0001
Yield 密度Density (B) 1 10842711 10842711 2.9694 0.0939
施肥Fertilization (C) 2 51563415 25781707 7.0607 0.0027
A×B 2 214486100 107243050 29.3699 0.0001
A×C 4 29927497 7481874 2.0490 0.1095
B×C 2 18801364 9400682 2.5745 0.0910
A×B×C 4 221833261 8703072 2.3835 0.0707
水分利用效率 年份Year (A) 2 23650 11825 576.1169 0.0001
WUE 密度Density (B) 1 209 209 10.1753 0.0031
施肥Fertilization (C) 2 664 332 16.1653 0.00001
A×B 2 1844 922 44.9266 0.0001
A×C 4 284 71 3.4612 0.0178
B×C 2 576 288 14.0378 0.00004
A×B×C 4 409 102 4.9848 0.0029

Fig. 5

Effects of fertilization patterns and sowing density on yield and WUE PM: traditional fertilizer; PMN: reduced chemical fertilizer dressing; PMO: organic manure substitution."

[1] 侯慧芝, 王娟, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡 . 半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响. 作物学报, 2015,41:1582-1590.
Hou H Z, Wang J, Zhang X C, Fang Y J, Yu X F, Wang H L, Ma Y F . Effects of mini-ditch planting with plastic mulching in ridges on soil water content, temperature and potato yield in rain-fed semiarid region. Acta Agron Sin, 2015,41:1582-1590 (in Chinese with English abstract).
[2] 秦舒浩, 张俊莲, 王蒂, 蒲育林, 杜全中 . 覆膜与沟垄种植模式对旱作马铃薯产量形成及水分运移的影响. 应用生态学报, 2011,22:389-394.
Qin S H, Zhang J L, Wang D, Pu Y L, Du Q Z . Effects of different film mulch and ridge-furrow cropping patterns on yield formation and water translocation of rainfed potato. Chin J Appl Ecol, 2011,22:389-394 (in Chinese with English abstract).
[3] 侯慧芝, 方彦杰, 张绪成, 王红丽, 于显枫, 马一凡 . 半干旱区旱地马铃薯全膜覆盖起垄微沟种植技术. 中国马铃薯, 2015, ( 1):18-20.
Hou H Z, Fang Y J, Zhang X C, Wang H L, Yu X F, Ma Y F . Potato planting technology of ridge with mini-ditch and whole field plastic mulch in semiarid region. Chin Potato J, 2015, ( 1):18-20 (in Chinese with English abstract).
[4] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[5] 陈亚兰, 张健, 韩儆仁, 王会蓉 . 陇中干旱半干旱地区马铃薯养分资源投入的调查与分析. 中国马铃薯, 2013,27:208-211.
Chen Y L, Zhang J, Han J R, Wang H R . Investigation and analysis of potato nutrient resource inputting in longzhong arid and semiarid area. Chin Potato J, 2013,27:208-211 (in Chinese with English abstract).
[6] 张福锁, 崔振岭, 王激清, 李春俭, 陈新平 . 中国土壤和植物养分管理现状与改进策略. 植物学通报, 2007,24:687-694.
Zhang F S, Cui Z L, Wang J Q, Li C J, Chen X P . Current status of soil and plant nutrient management in china and improvement strategies. Chin Bull Bot, 2007,24:687-694 (in Chinese with English abstract).
[7] 张绪成, 于显枫, 王红丽, 侯慧芝, 方彦杰, 马一凡 . 半干旱区减氮增钾、有机肥替代对全膜覆盖垄沟种植马铃薯水肥利用和生物量积累的调控. 中国农业科学, 2016,49:852-864.
Zhang X C, Yu X F, Wang H L, Hou H Z, Fang Y J, Ma Y F . Regulations of reduced chemical nitrogen, potassium fertilizer application and organic manure substitution on potato water- fertilizer utilization and biomass assimilation under whole field plastics mulching and ridge-furrow planting system on semi-arid area. Sci Agric Sin, 2016,49:852-864 (in Chinese with English abstract).
[8] 于显枫, 张绪成, 王红丽, 马一凡, 侯慧芝, 方彦杰 . 施肥对旱地全膜覆盖垄沟种植马铃薯耗水特征及产量的影响. 应用生态学报, 2016,27:883-890.
Yu X F, Zhang X C, Wang H L, Ma Y F, Hou H Z, Fang Y J . Effects of fertilizer application on water consumption characteristics and yield of potato cultured under ridge-furrow and whole field plastic mulching in rain-fed area. Chin J Appl Ecol, 2016,27:883-890 (in Chinese with English abstract).
[9] 何华, 赵世伟, 陈国良 . 不同水氮条件对马铃薯肥料利用率的影响. 应用生态学报, 2000,11:235-239.
He H, Zhao S W, Chen G L . Effect of different watering and fertilization on N utilization efficiency. Chin J Appl Ecol, 2000,11:235-239 (in Chinese with English abstract).
[10] 段玉, 妥德宝, 赵沛义, 李焕春 . 马铃薯施肥肥效及养分利用率的研究. 中国马铃薯, 2008,22:197-200.
Duan Y, Tuo D B, Zhao P Y, Li H C . Effect of fertilizer and nutrient use efficiency on potato in inner mondolia. Chin Potato J, 2008,22:197-200 (in Chinese with English abstract).
[11] 田丰, 张永成, 张凤军, 石小红, 马福荣 . 不同肥料和密度对马铃薯光合特性和产量的影响. 西北农业学报, 2010,19(6):95-98.
Tian F, Zhang Y C, Zhang F J, Shi X H, Ma F R . Effects of fertilizer and density on photosynthetic characteristics and yield of potato. Acta Agric Boreali-occident Sin, 2010,19(6):95-98 (in chinese with English abstract).
[12] 马文奇, 张福锁, 陈新平 . 中国养分资源综合管理研究的意义与重点. 科技导报, 2006,24(10):64-67.
Ma W Q, Zhang F S, Chen X P . Significance and keystone of research of integrated nutrient resource management in china. Sci Technol Rev, 2006,24(10):64-67 (in Chinese with English abstract).
[13] 易琼, 张秀芝, 何萍, 杨利, 熊桂云 . 氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响. 植物营养与肥料学报, 2010,16:1069-1077.
Yi Q, Zhang X Z, He P, Yang L, Xiong G Y . Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system. Plant Nutr Fert Sci, 2010,16:1069-1077 (in Chinese with English abstract).
[14] 陈光荣, 王立明, 杨如萍, 董博, 杨桂芳, 张国宏, 杨文钰 . 平衡施肥对马铃薯-大豆间作系统中作物产量的影响. 作物学报, 2017,43:596-607.
Chen G R, Wang L M, Yang R P, Dong B, Yang G F, Zhang G H, Yang W Y . Effect of balanced fertilizer application on crop yield in potato-soybean relay-cropping system. Acta Agron Sin, 2017,43:596-607 (in Chinese with English abstract).
[15] 陈建国, 何文寿, 代晓华, 王耀科, 马俭 . 施肥对旱作马铃薯干物质及养分吸收的影响. 中国马铃薯, 2016,30:282-288.
Chen J G, He W S, Dai X H, Wang Y K, Ma J . Effect of fertilization on dry matter and nutrient uptake of potato under dry farming system. Chin Potato J, 2016, 30:282-288 (in Chinese with English abstract).
[16] 崔学开, 陈建林, 王明义, 杨国苍, 郑红英 . 不同施肥和密度对马铃薯产量的影响. 中国马铃薯, 2010,24:360-363.
Cui X K, Chen J L, Wang M Y, Yang G C, Zheng H Y . Effect of fertilization and plant density on potato yield. Chin Potato J, 2010, 24:360-363 (in Chinese with English abstract).
[17] 李玲玲 . 有机肥氮素有效性和替代化肥氮比例研究. 中国农业科学院硕士学位论文, 北京, 2011.
Li L L . Manure Nitrogen Availability and Its Substitution Ratio for Chemical Fertilizer Nitrogen. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2011 (in Chinese with English abstract).
[18] 何万春, 何昌福, 邱慧珍, 张文明, 王亚飞, 张春红, 王蒂 . 不同氮水平对旱地覆膜马铃薯干物质积累与分配的影响. 干旱地区农业研究, 2016,34(4):175-182.
He W C, He C F, Qiu H Z, Zhang W M, Wang Y F, Zhang C H, Wang D . Effect of nitrogen rates on dry matter accumulation and distribution of potato plants under film mulching in dry land. Agric Res Arid Areas, 2016,34(4):175-182 (in Chinese with English abstract).
[19] 刘向梅, 孙磊, 李功义, 石立航, 王弘, 徐姗姗 . 氮磷钾肥施用量及施用时期对马铃薯养分转运分配的影响. 中国土壤与肥料, 2013, ( 4):59-65.
Liu X M, Sun L, Li G Y, Shi L H, Wang H, Xu S S . Effect of N, P, K fertilizers application rate and time on translocation and distribution of nutrients in potato plant. Soil Ferti Sci, 2013, ( 4):59-65 (in Chinese with English abstract).
[20] 薛俊武, 任稳江, 严昌荣 . 覆膜和垄作对黄土高原马铃薯产量及水分利用效率的影响. 中国农业气象, 2014,35:74-79.
Xue J W, Ren W J, Yan C R . Effects of plastic film mulching and ridge planting on yield and water use efficiency of potato in loess plateau. Chin J Agrometeorol, 2014,35:74-79 (in Chinese with English abstract).
[21] 张永成, 张凤军 . 马铃薯产量与栽培密度及氮磷钾施肥用量的关系研究. 中国种业, 2010, ( 9):68-70.
Zhang Y C, Zhang F J . Study on the relationship between potato yield and cultivation density and N, P, K fertilizer application. Chin Seed Ind, 2010, ( 9):68-70 (in Chinese with English abstract).
[22] 郑顺林, 王良俊, 万年鑫, 胡建军, 何卫, 袁继超 . 密度对不同生态区马铃薯产量及块茎空间分布的影响. 西北农林科技大学学报(自然科学版), 2017,45(7):15-23.
Zheng S L, Wang L J, Wan N X, Hu J J, He W, Yuan J C . Effect of plant density on tuber yield and spatial distribution response of potato from different ecological regions in Sichuan. J Northwest A&F Univ( Nat Sci Edn), 2017,45(7):15-23 (in Chinese with English abstract).
[23] 齐爽, 廉华, 马光恕, 李忠魁 . 不同栽培密度对马铃薯生长特性的影响. 安徽农学通报, 2009,15(24):71-73.
Qi S, Lian H, Ma G S, Li Z K . Effects of different planting densities on growth characteristics of potato. Anhui Agric Sci Bull, 2009,15(24):71-73 (in Chinese with English abstract).
[24] 岳云, 朱永永, 赵贵宾, 熊春荣, 赵小文, 边彩燕, 罗磊 . “一膜两年用”不同播种密度对马铃薯生长及产量的影响. 西北农业学报, 2017,26:384-389.
Yue Y, Zhu Y Y, Zhao G B, Xiong C R, Zhao X W, Bian C Y, Luo L . Effect of different planting densities on potato growth and yield in two-year plastic film mulching. Acta Agric Boreali-occident Sin, 2017,26:384-389 (in Chinese with English abstract).
[25] Subrahmaniyan K, Mathieu N . Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sus Dev, 2012,32:501-529.
doi: 10.1007/s13593-011-0068-3
[26] Li X Y . Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. CATENA, 2003,2:105-127.
[27] 刘明霞, 王一航, 陆立银, 谢奎忠, 陈年来 . 氮磷肥及栽培密度对‘陇薯8号’产量的影响. 甘肃农业大学学报, 2011,46(4):80-84.
Liu M X, Wang Y H, Lu L Y, Xie K Z, Chen N L . Effect of nitrogen phosphorus and planting density on yield of ‘Longshu 8’ potato. J Gansu Agrci Univ, 2011,46(4):80-84 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[12] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[13] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
Full text



No Suggested Reading articles found!