Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (5): 755-763.doi: 10.3724/SP.J.1006.2019.84084

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Response mechanism of sweet potato storage root formation and bulking to soil compaction and its relationship with yield

Wen-Qing SHI1,Bin-Bin ZHANG1,Hong-Juan LIU1,Qing-Xin ZHAO2,Chun-Yu SHI1,*(),Xin-Jian WANG1,Cheng-Cheng SI1   

  1. 1 College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;
    2 Shandong Province Agricultural Technology Extension Station, Jinan 250100, Shandong, China
  • Received:2018-06-20 Accepted:2018-12-24 Online:2019-05-12 Published:2019-02-01
  • Contact: Chun-Yu SHI E-mail:scyu@sdau.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31371577);the Potato Innovation Program for Chief Expert of Shandong Province(SDAIT-16-01)

Abstract:

Field experiments were performed using two sweet potato [Ipomoea batatas L. (Lam.)].cultivars (‘Beijing 553’ and ‘Longshu 9’) with significant differences in source sink characteristics. The physiological and ecological mechanisms of regulation of soil compaction on storage root yield were studied under different soil compaction treatments. The non-capillary porosity of plough horizon increased significantly during the whole growth period with the decrease of soil compactness. During storage root formation (20-40 d), the minimum temperature was significantly decreased, the maximum temperature and diurnal temperature range of plough layer were significantly increased with the decrease of soil compactness. Compared with the control, the loose treatment could increase the activities of sucrose synthase (SS) and adenosine diphosphate glucose pyrophosphorylase (ADPGPPase) in storage roots, also the starch content, the initial dry matter accumulation potential, dry matter accumulation rate and the distribution ratio of 13C assimilates from functional leaf to storage root. At harvest period the average weight per storage root and harvest index were significantly increased in the loose treatment, Beijing 553 and Longshu 9 increased production by 20.01% to 24.25% and 21.64% to 27.78%, respectively.

Key words: sweet potato, soil compaction, root formation, tuberous thickening, yield

Table 1

Soil physical properties in main growing period"

年份
Year
栽后天数
Days after planting
(d)
处理
Treatment
土层深度
Depth of
soil layer
(cm)
土壤紧实度
Soil compaction
(kPa)
容重
Bulk density
(g cm-3)
总孔隙度
Bulk porosity
(%)
毛管孔隙度
Capillary
porosity
(%)
非毛管孔隙度Non-capillary
porosity
(%)
2014 0 SS 5-10 251.33 e 1.25 c 52.29 a 32.71 c 19.58 a
15-20 264.22 de 1.28 bc 51.46 a 34.31 bc 17.15 b
CK 5-10 384.00 c 1.30 bc 50.89 ab 38.13 ab 12.76 d
15-20 405.44 c 1.31 bc 50.67 ab 38.68 ab 11.99 d
JS 5-10 833.22 b 1.40 a 47.49 b 39.04 ab 8.45 g
15-20 1085.00 a 1.42 a 46.66 b 39.69 a 6.97 h
160 SS 5-10 267.93 de 1.26 c 52.07 a 35.71 bc 16.36 b
15-20 287.86 d 1.29 bc 51.16 a 36.37 b 14.79 c
CK 5-10 403.33 c 1.32 ab 50.50 ab 39.52 ab 10.98 e
15-20 432.11 c 1.33 ab 50.01 ab 40.68 a 9.33 f
JS 5-10 865.56 b 1.42 a 46.82 b 41.40 a 5.42 i
15-20 1125.00 a 1.43 a 46.41 b 41.69 a 4.72 j
2015 0 SS 5-10 261.00 d 1.25 c 51.17 ab 30.98 c 20.19 a
15-20 271.47 d 1.27 bc 51.68 ab 32.49 c 19.19 a
CK 5-10 402.17 c 1.25 c 52.83 a 34.68 bc 18.15 b
15-20 416.40 c 1.30 b 51.90 a 36.96 ab 14.94 c
JS 5-10 876.28 b 1.39 ab 47.11 b 37.64 ab 9.47 e
15-20 1130.00 a 1.43 a 47.21 b 38.23 ab 8.99 e
160 SS 5-10 277.72 d 1.26 c 51.40 ab 34.98 bc 16.42 c
15-20 289.67 d 1.28 bc 51.87 a 36.15 b 15.71 c
CK 5-10 421.56 c 1.27 bc 51.98 a 36.43 b 15.56 c
15-20 430.07 c 1.31 b 50.99 ab 39.96 a 11.03 d
JS 5-10 901.83 b 1.42 ab 46.99 b 39.39 a 7.60 f
15-20 1190.44 a 1.44 a 47.17 b 39.73 a 7.45 f

Table 2

Effect of soil compaction on soil temperature in the early growth stage of sweet potato (°C)"

年份
Year
土层深度
Depth of
soil layer
(cm)
处理
Treatment
栽后20 d 20 days after planting 栽后30 d 30 days after planting 栽后40 d 40 days after planting
最高
温度
MAT
最低
温度
MIT
日较差
DTR
最高
温度
MAT
最低
温度
MIT
日较差
DTR
最高
温度
MAT
最低
温度
MIT
日较差
DTR
2014 10 SS 34.3 a 17.8 b 16.5 a 39.8 a 19.8 a 20.0 a 33.4 a 25.2 a 8.2 a
CK 34.1 a 18.8 b 15.3 a 37.9 a 20.6 a 17.3 a 32.9 a 25.4 a 7.5 a
JS 33.0 a 19.9 a 13.1 b 34.5 b 21.1 a 13.4 b 33.3 a 25.7 a 7.6 a
20 SS 28.8 a 18.8 b 10.0 a 31.6 a 21.6 b 11.0 a 30.9 a 25.9 a 5.0 a
CK 28.0 a 19.9 ab 8.1 b 30.8 a 22.1 ab 8.7 b 30.9 a 26.1 a 4.8 a
JS 26.9 a 21.0 a 5.9 c 27.7 a 22.9 a 4.8 c 30.2 a 26.5 a 3.7 b
2015 10 SS 35.3 a 17.4 b 17.9 a 39.0 a 19.4 a 19.7 a 34.3 a 24.4 a 9.9 a
CK 34.8 a 18.4 ab 16.4 b 38.0 ab 19.9 a 18.2 a 33.0 a 24.7 a 8.3 b
JS 33.5 a 19.2 a 14.3 c 35.5 b 21.4 a 14.1 b 34.3 a 25.5 a 8.8 b
20 SS 29.5 a 20.5 b 9.0 a 31.3 a 21.5 b 9.8 a 30.0 a 26.6 a 3.5 a
CK 28.8 a 22.1 ab 6.7 b 30.5 a 23.1 ab 7.5 b 30.0 a 26.5 a 3.5 a
JS 27.5 a 23.3 a 4.25 c 29.5 a 24.3 a 5.3 c 30.5 a 27.1 a 3.5 a

Table 3

Storage root yield and harvest index"

年份
Year
品种
Variety
处理
Treatment
块根产量
Root tuber yield
(t hm-2)
生物产量
Biomass
(t hm-2)
单株结薯数
Storage root
(lump plant-1)
单薯重
Fresh weight
(g lump-1)
收获指数
Harvest
index
2014 北京553
Beijing 553
SS 36.22 a 58.24 a 2.65 a 284.70 a 0.62 a
CK 29.15 b 56.72 a 2.53 a 238.30 b 0.51 b
JS 18.62 c 46.86 b 2.11 b 173.35 c 0.40 c
龙薯9号
Longshu 9
SS 53.95 a 73.54 a 2.99 a 360.69 a 0.73 a
CK 42.22 b 71.82 a 2.83 a 308.24 b 0.59 b
JS 20.17 c 54.60 b 2.39 b 175.50 c 0.37 c
2015 北京553
Beijing 553
SS 38.98 a 65.42 a 2.68 a 302.43 a 0.60 a
CK 32.48 b 65.25 a 2.66 a 254.77 b 0.50 b
JS 21.60 c 57.77 b 2.29 b 196.72 c 0.37 c
龙薯9号
Longshu 9
SS 57.90 a 85.62 a 2.97 a 406.31 a 0.68 a
CK 47.60 b 83.52 a 3.07 a 322.50 b 0.57 b
JS 19.75 c 41.64 b 2.77 b 148.38 c 0.47 c

Table 4

Characteristics of dry matter accumulation in storage root tuber (2015)"

品种
Variety
处理
Treatment
a b k R2 C0 Vmean Vmax Xmax.V D
北京553
Beijing 553
SS 8.21 0.07 277.63 0.93 0.08 1.93 5.01 113.63 144.04
CK 8.68 0.07 236.18 0.94 0.04 1.58 4.30 119.11 149.27
JS 8.56 0.08 132.49 0.95 0.03 0.94 2.53 122.21 141.02
龙薯9号
Longshu 9
SS 5.41 0.05 333.91 0.94 1.49 2.24 4.26 105.94 148.96
CK 5.36 0.05 281.57 0.91 1.32 1.76 3.32 113.62 160.18
JS 5.35 0.04 147.78 0.90 0.70 0.81 1.54 128.66 181.45

Table 5

Distribution ratio of 13C assimilates of functional leaf in different organs at 100 d after planting (%, 2015)"

品种
Variety
处理
Treatment
标记部位
Labeled part
上部
Upper part
下部
Lower part
侧枝
Branch
块根
Storage root
北京553
Beijing 553
SS 0.87 c 0.90 c 4.05 c 35.21 c 58.98 a
CK 1.24 b 1.03 b 5.58 b 50.05 b 42.11 b
JS 2.80 a 2.69 a 8.45 a 61.11 a 24.97 c
龙薯9号
Longshu 9
SS 0.71 c 1.10 b 3.16 b 22.02 c 73.02 a
CK 1.03 b 0.69 c 2.22 c 29.12 b 66.93 b
JS 3.76 a 3.06 a 8.16 a 37.29 a 47.74 c

Table 6

Contents of soluble sugar, sucrose, and starch of storage roots in key growth periods (DW%, 2015)"

品种
Variety
栽后天数
Days after planting (d)
处理
Treatment
可溶性糖
Soluble sugar
蔗糖
Sucrose
淀粉
Starch
北京553
Beijing 553
65 SS 10.23 a 9.61 a 62.28 a
CK 10.59 a 10.07 a 54.84 b
JS 10.85 a 10.19 a 52.86 b
105 SS 6.58 b 5.68 b 67.96 a
CK 8.59 a 7.57 a 65.69 ab
JS 8.63 a 8.37 a 62.47 b
145 SS 8.80 c 11.89 c 74.06 a
CK 9.88 b 13.77 b 70.38 a
JS 10.69 a 15.17 a 63.95 b
龙薯9号
Longshu 9
65 SS 11.86 b 9.83 b 59.26 a
CK 12.46 b 10.28 b 57.80 a
JS 15.85 a 13.06 a 54.26 a
105 SS 12.76 b 8.16 c 62.86 a
CK 13.34 ab 9.88 b 58.52 ab
JS 14.00 a 13.66 a 53.92 b
145 SS 16.53 a 9.79 c 67.40 a
CK 16.97 a 11.04 b 59.53 b
JS 17.07 a 12.10 a 56.01 b

Fig. 1

Sucrose synthase (SS) activity of storage roots in key growth periods (2015) Values followed by different letters in the same column are significantly different among different treatments at the 0.05 probability level. Abbreviations are the same as those given in Table 1."

Fig. 2

ADP glucose pyrophosphorylase (ADPGPPase) activity of storage roots in key growth periods (2015) Values followed by different letters in the same column are significantly different among different treatments at the 0.05 probability level. Abbreviations are the same as those given in Table 1."

[1] Kazuyki W, Toshio K . Studies on the effects of soil physical conditions on the growth and yield of crop plants: III. Effects of the capacity and composition of soil air on the growth and yield of sweet potato plants. Jpn J Crop Sci, 1964,33:418-422.
[2] 史春余, 王振林, 余松烈 . 甘薯光合产物的积累分配及其影响因素. 山东农业大学学报(自然科学版), 2001,32(1):90-94.
Shi C Y, Wang Z L, Yu S L . Accumulation and distribution of photosynthats in sweet potato and the influence factors. J Shandong Agric Univ(Nat Sci Edn), 2001,32(1):90-94 (in Chinese).
[3] Kazuyki W, Toshio K . Studies on the effects of soil physical conditions on the growth and yield of crop plants: IV. Effects of the different soil structures on a few physiological characters of sweet potato plants. Jpn J Crop Sci, 1965,34:409-412.
[4] Kaoru E. Hakabu S . Effect of atmospheric humidity and soil moisture on the translocation of sucroce- 14C in the sweet potato plant . Jpn J Crop Sci, 1962,32:41-44.
[5] 王树钿, 于作庆 . 甘薯在不同土壤条件下高产规律的初步研究. 中国农业科学, 1981,14(1):49-55.
Wang S D, Yu Z Q . A preliminary study on the high-yielding law of sweet potato in different kind of soil. Sci Agric Sin, 1981,14(1):49-55 (in Chinese with English abstract).
[6] 史春余, 王振林, 郭风法, 余松烈 . 土壤通气性对甘薯养分吸收、 14C同化物分配及产量的影响 . 核农学报, 2002,16:232-236.
Shi C Y, Wang Z L, Guo F F, Yu S L . Effects of the soil aeration on nutrient absorption, 14C-assimilates distribution and storage root yield in sweet potato . Acta Agric Nucl Sin, 2002,16:232-236 (in Chinese with English abstract).
[7] 史春余, 王振林, 余松烈 . 土壤通气性对甘薯产量的影响及其生理机制. 中国农业科学, 2001,34:173-178.
Shi C Y, Wang Z L, Yu S L . Effects of soil aeration on sweet potato yield and its physiological mechanism. Sci Agric Sin, 2001,34:173-178 (in Chinese with English abstract).
[8] 柳洪鹃, 史春余, 张立明, 张海峰, 王振振, 柴沙沙 . 钾素对食用型甘薯糖代谢相关酶活性的影响. 植物营养与肥料学报, 2012,18:724-732.
Liu H J, Shi C Y, Zhang L M, Zhang H F, Wang Z Z, Chai S S . Effect of potassium on related enzyme activities in sugar metabolism of edible sweet potato. Plant Nutr Fert Sci, 2012,18:724-732 (in Chinese with English abstract).
[9] 董明辉, 赵步洪, 吴翔宙, 陈涛, 杨建昌 . 水稻结实期不同粒位籽粒相关内源激素含量和关键酶活性的差异及其与品质的关系. 中国农业科学, 2008,41:370-380.
Dong M H, Zhao B H, Wu X Y, Chen T, Yang J C . Difference in hormonal content and activities of key enzymes in the grains at different positions on a rice panicle during grain filling and their correlations with rice qualities. Sci Agric Sin, 2008,41:370-380 (in Chinese with English abstract).
[10] 岳向文 . 小麦腺苷二磷酸葡萄糖焦磷酸化酶同工酶类型与淀粉含量关系的研究. 山东农业大学硕士学位论文, 山东泰安, 2008.
Yue X W . Types of Isozyme and the Relationship between Isozymes and Starch Content in Common Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2008 (in Chinese with English abstract).
[11] 夏斌, 郭涛, 王慧, 刘永柱, 张建国, 陈志强 . 水稻淀粉合成关键酶的研究进展. 中国农学通报, 2009,25(22):47-51.
Xia B, Guo T, Wang H, Liu Y Z, Zhang J G, Chen Z Q . Progress in key enzymes of starch synthesis in rice. Chin Agric Sci Bul, 2009,25(22):47-51 (in Chinese with English abstract).
[12] 刘淑云, 董树亭, 胡昌浩, 白萍, 吕新 . 玉米产量和品质与生态环境的关系. 作物学报, 2005,31:571-576.
Liu S Y, Dong S T, Hu C H, Bai P, Lyu X . Relationship between ecological environment and maize yield and quality. Acta Agron Sin, 2005,31:571-576 (in Chinese with English abstract).
[13] 陶志强, 陈源泉, 李超, 袁淑芬, 师江涛, 高旺盛, 隋鹏 . 华北低平原不同播种期春玉米的产量表现及其与气象因子的通径分析. 作物学报, 2013,39:1628-1634.
Tao Z Q, Chen Y Q, Li C, Yuan S F, Shi J T, Gao W S, Sui P . Path analysis between yield of spring maize and meteorological factors at different sowing times in north China low plain. Acta Agron Sin, 2013,39:1628-1634 (in Chinese with English abstract).
[14] 吴元中, 李育民 . 自控温室气象条件对番茄产量的影响. 生态农业研究, 2000,8(4):13-15.
Wu Y Z, Li Y M . Effect of meteorological conditions in self-controlled greenhouse on the yield of tomato. Eco-Agric Res, 2000,8(4):13-15(in Chinese with English abstract).
[15] 熊伟, 杨婕, 吴文斌, 黄丹丹, 曹阳 . 中国水稻生产对历史气候变化的敏感性和脆弱性. 生态学报, 2013,33:509-518.
Xiong W, Yang J, Wu W B, Huang D D, Cao Y . Sensitivity and vulnerability of China’s rice production to observed climate change. Acta Ecol Sin, 2013,33:509-518 (in Chinese with English abstract).
[16] 赵腾飞, 韩亚东, 于晓刚, 商全玉, 张文忠 . 温度对北方粳型超级稻沈农265生长发育及产量的影响. 辽宁农业科学, 2010, ( 5):33-36.
Zhao T F, Han Y D, Yu X G, Shang Q Y, Zhang W Z . Effect of temperature on growth and development and yield of north japonica super rice shennong 265. Liaoning Agric Sci, 2010, ( 5):33-36 (in Chinese).
[17] 王树森, 邓根云 . 地膜覆盖增温机制研究. 中国农业科学, 1991,24(3):74-78.
Wang S S, Deng G Y . A study on the mechanism of soil temperature increasing under plastic mulch. Sci Agric Sin, 1991,24(3):74-78 (in Chinese with English abstract).
[18] 江燕, 史春余, 王振振, 王翠娟, 柳洪鹃 . 地膜覆盖对耕层土壤温度水分和甘薯产量的影响. 中国生态农业学报, 2014,22:627-634.
Jiang Y, Shi C Y, Wang Z Z, Wang C J, Liu H J . Effects of plastic film mulching on arable layer soil temperature, moisture and yield of sweet potato. Chin J Eco-Agric, 2014,22:627-634 (in Chinese with English abstract).
[19] 汪宝卿, 杜召海, 解备涛, 张海燕, 张立明, 张文兰 . 地膜覆盖对土壤水分和夏薯苗期根系建成的影响. 山东农业科学, 2014,46(2):41-45.
Wang B Q, Du Z H, Xie B T, Zhang H Y, Zhang L M, Zhang W L . Effects of film mulching on water content in soil and root formation of summer sweet potato seedling. Shandong Agric Sci, 2014,46(2):41-45 (in Chinese with English abstract).
[20] 李雪英, 朱海波, 刘刚, 侯丽娟, 丛晓飞 . 地膜覆盖对甘薯垄内温度和产量的影响. 作物杂志, 2012, ( 1):121-123.
Li X Y, Zhu H B, Liu G, Hou L J, Cong X F . Effects of plastic film mulching of sweet potato on in-row temperature and yield. Crops, 2012, ( 1):121-123 (in Chinese with English abstract).
[21] 王翠娟, 史春余, 王振振, 柴沙沙, 柳洪鹃, 史衍玺 . 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响. 作物学报, 2014,40:1677-1685.
Wang C J, Shi C Y, Wang Z Z, Chai S S, Liu H J, Shi Y X . Effects of plastic film mulching cultivation on young roots growth development, tuber formation and tuber yield of sweet potato. Acta Agron Sin, 2014,40:1677-1685 (in Chinese with English abstract).
[22] Zhang C F, Huang Y L, Zhou H, Zhang Y, Zhang D W . Effects of plastic film mulching on physical characters of soil and yield and yield components of sweet potato. Agric Sci Tech, 2015,16:2379-2385.
[23] Kim S H, Mizuno K, Fujimura T . Regulated expression of ADP glucose pyrophosphorylase and chalcone synthase during root development in sweet potato. Plant Growth Regul, 2002,38:173-179.
doi: 10.1023/A:1021291616387
[24] Kamali F . Evaluation of root sink ability of sweet potato ( Ipomoea batatas Lam) cultivars on the basis of enzymatic activity in the starch synthesis pathway. J Agron Crop Sci, 2010,177:17-23.
[25] 陈晓光, 史春余, 王振林, 张立明, 张晓冬 . 多效唑对食用甘薯北京553块根淀粉积累及相关酶活性的影响. 中国农业科学, 2012,45:192-198.
Chen X G, Shi C Y, Wang Z L, Zhang L M, Zhang X D . Effect of paclobutrazol on starch accumulation and related enzyme activity of storage root in edible sweet potato cv. Beijing 553. Sci Agric Sin, 2012,45:192-198 (in Chinese with English abstract).
[26] 柳洪鹃, 姚海兰, 史春余, 张立明 . 施钾时期对甘薯济徐23块根淀粉积累与品质的影响及酶学生理机制. 中国农业科学, 2014,47:43-52.
Liu H J, Yao H L, Shi C Y, Zhang L M . Effect of potassium application time on starch accumulation and related enzyme activities of sweet potato variety Jixu 23. Sci Agric Sin, 2014,47:43-52 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!