Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (9): 1332-1339.doi: 10.3724/SP.J.1006.2020.02013

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular identification of rice bacterial blight susceptible gene Xig1 and creation of disease resistant resources

ZHENG Kai-Li1(), JI Zhi-Yuan1(), HAO Wei1, TANG Yong-Chao1, WEI Ye-Na1,2, HU Yun-Gao2, ZHAO Kai-Jun1, WANG Chun-Lian1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
    2 Rice Research Institute, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • Received:2020-02-27 Accepted:2020-04-15 Online:2020-09-12 Published:2020-05-07
  • Contact: Chun-Lian WANG E-mail:zhkl111007@163.com;jizhiyuan@caas.cn;wangchunlian@caas.cn
  • Supported by:
    National Natural Science Foundation of China(31571640);Young Elite Scientist Sponsorship of China Association for Science and Technology(2017QNRC001)

Abstract:

The rice bacterial blight susceptible gene Xig1 (Xoo-induced-gene 1), was found highly induced by Xanthomonas oryzae pv. oryzae (Xoo) in susceptible parent line IR24 but not in introgression line W6023. In this study, we cloned and sequenced Xig1 alleles isolated from W6023 and IR24, and the main difference in nucleotide sequences between Xig1 alleles of W6023 and IR24 was in the promoter region. Subcellular localization in rice protoplast indicated that XIG1 localized to cytoplasm. CRISPR/Cas9-based genome editing technologies were also applied to knock out Xig1 in IR24. Eight Xig1-edited mutant lines showed a higher resistance to Xoo, and all agronomic traits surveyed are consistent. Xig1 is a novel susceptible gene for bacterial blight in rice. The studying of the mechanism of Xig1 to Xoo in rice will not only provide a theorical guidance for disease resistance resource, but also benefit the understanding of plant innate immunity.

Key words: rice, bacterial blight, Xig1, CRISPR/Cas9

Fig. 1

Relative expression level of Xig1 in IR24 and W6023 under the inoculation of P6"

Table 1

Cis-acting elements of Xig1IR24 gene promoter region"

顺式作用元件
Cis-acting element
核心序列
Core sequence
功能
Function
数量
Amount
GARE-motif AAACAGA 赤霉素反应元件Gibberellin response-related elements 1
GT1-motif GGTTAA 光响应元件Light response elements 2
MBS CGGTCA, CAACTG MYB结合位点、参与干旱诱导
MYB binding sites involved in drought-inducibility
4
Skn-1motif GTCAT 胚乳表达所需元件Elements related to endosperm expression 4
TA-rich region TATATATATATATATATATATA 增强子Enhancer 1
TATA-box TATA, TTA, TAATA 核心启动子元件Core promoter element 21
TC-rich repeats GTTTTCTTAC, ATTTTCTCCA 防御和应激反应元件
Elements involved in defense and stress responsiveness
2
TGA-element AACGAC 生长素应答元件Auxin response elements 1

Fig. 2

Subcellular localization of XIG1::YFP in rice protoplast YFP: yellow fluorescent signal; Merge: YFP and bright field images were merged."

Fig. 3

Molecular detection of T0 transgenic plants M: marker; WT: IR24 (negative control); 1-32: T0 transgenic plants."

Fig. 4

The target sequences of the 17 homozygous Xig1-edited lines of T2 Capitalized bold letters are PAM sequences; underlined sequences are target sequences; red dashes indicate nucleotide deletions; red lowercase letters indicate inserted nucleotides; italic capital letters are initiation codons. The numbers on the right side of the sequences represent the types of mutation at each target site and the number of nucleotides involved in the mutation. “-” and “+” indicate the number of deletion and insertion nucleotides, respectively. The 100 bp are the bases not shown in this sequence."

Fig. 5

Disease response to Xoo strain P6 of 8 T2 transgenic lines A, C: Disease reactions of 7 days and 14 days after inoculation in eight transgenic lines and IR24. B, D: Lesion length of 7 days and 14 days after inoculation with PXO99A in eight transgenic lines compared with IR24. ** denotes significantly different (P < 0.01). Arrows indicates the inoculated leaves of IR24."

Table 2

Analysis of agronomic traits of 8 gene editing lines"

基因编辑株系
Lines
株高
Plant height
(cm)
分蘖数
Number of tillers
穗粒数
Number of grains
per panicle
结实率
Seed-setting rate
(%)
千粒重
Thousand-seed weight (g)
籽粒产量
Grain yield (g)
IR24 87.2±2.1 a 10.8±1.3 a 112.7±12.6 a 82.9±1.9 a 24.8±0.8 a 24.5±2.9 a
Xig1-3 87.1±1.6 a 11.9±1.7 a 110.9±9.9 a 80.2±1.4 a 24.4±1.0 a 26.0±4.5 a
Xig1-6 87.8±2.6 a 11.8±1.9 a 108.8±5.5 a 80.0±1.7 a 25.9±0.9 a 26.7±2.6 a
Xig1-12 86.7±2.5 a 10.6±0.9 a 114.5±10.9 a 81.2±1.5 a 24.6±0.7 a 24.9±6.0 a
Xig1-15 86.5±1.5 a 10.5±1.7 a 114.6±11.3 a 83.6±0.4 a 24.9±1.8 a 25.2±2.5 a
Xig1-20 86.7±1.5 a 11.3±1.6 a 116.7±8.9 a 84.1±1.1 a 25.1±1.2 a 28.0±3.7 a
Xig1-21 87.6±2.3 a 10.4±1.5 a 123.0±10.0 a 82.7±2.2 a 25.9±1.3 a 27.2±2.0 a
Xig1-24 88.2±1.9 a 13.2±3.2 a 97.4±4.3 a 83.2±3.3 a 25.2±0.5 a 26.8±2.1 a
Xig1-26 88.4±1.7 a 10.2±2.2 a 118.0±12.9 a 84.2±3.3 a 25.5±0.8 a 25.6±3.1 a
[1] Liu W, Liu J, Triplett L, Leach J E, Wang G L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol, 2014,52:213-241.
doi: 10.1146/annurev-phyto-102313-045926 pmid: 24906128
[2] Feng F, Zhou J M. Plant bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol, 2012,15:469-476.
doi: 10.1016/j.pbi.2012.03.004 pmid: 22465133
[3] Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 2007,318:648-651.
pmid: 17962565
[4] Römer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 2007,318:645-648.
doi: 10.1126/science.1144958 pmid: 17962564
[5] Yang B, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006,103:10503-10508.
doi: 10.1073/pnas.0604088103 pmid: 16798873
[6] Zhou J H, Peng Z, Long J Y, Sosso D, Liu B, Eom J S, Huang S, Liu S Z, Vera Cruz C, Formmer W B, White F F, Yang B. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J, 2015,82:632-643.
doi: 10.1111/tpj.12838 pmid: 25824104
[7] Antony G, Zhou J H, Huang S, Li T, Liu B, White F F, Yang B. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 2010,22:3864-3876.
doi: 10.1105/tpc.110.078964 pmid: 21098734
[8] Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, Feng J, Verdier V, Szurek B. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice Nodulin-3 Os11N3 gene. Mol Plant Microbe Interact, 2011,24:1102-1113.
doi: 10.1094/MPMI-11-10-0254 pmid: 21679014
[9] Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol, 2013,200:808-819.
doi: 10.1111/nph.12411
[10] Li T, Huang S, Zhou J H, Yang B. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. Mol Plant, 2013,6:781-789.
pmid: 23430045
[11] Yang Z, Sun X, Wang S, Zhang Q. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet, 2003,106:1467-1472.
pmid: 12750790
[12] Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 2016,11:e0154027.
pmid: 27116122
[13] 郝巍, 纪志远, 郑凯丽, 孙宏达, 王福军, 唐永超, 张明伟, 赵开军, 王春连. 利用基因组编辑技术创制水稻白叶枯病抗性材料. 植物遗传资源学报, 2018,19:523-530.
Hao W, Ji Z Y, Zheng K L, Sun H D, Wang F J, Tang Y C, Zhang M W, Zhao K J, Wang C L. Enhancing rice resistance to bacterial blight by genome editing. J Plant Genet Resour, 2018,19:523-530 (in Chinese with English abstract).
[14] Xu Z Y, Xu X M, Gong Q, Li Z Y, Li Y, Wang S, Yang Y Y, Ma W X, Liu L Y, Zhu B, Zhou L F, Chen G Y. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant, 2019 12:1434-1446.
doi: 10.1016/j.molp.2019.08.006 pmid: 31493565
[15] Oliva R, Ji C H, Atienza-Grande G, Huguet-Tapia J C, Perez-Quintero A, Li T, Eom J S, Li C H, Nguyen H, Liu B, Auguy F, Sciallano C, Luu V T, Dossa G S, Cunnac S, Schmidt S M, Slamet-Loedin I H, Vera Cruz C, Szurek B, Frommer W B, White F F, Yang B. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol, 2019; 37:1344-1350.
doi: 10.1038/s41587-019-0267-z pmid: 31659337
[16] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001,25:402-408.
pmid: 11846609
[17] McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosome. Theor Appl Genet, 1988,76:815-829.
doi: 10.1007/BF00273666 pmid: 24232389
[18] Wang K, Liu Y, Li S Q. Bimolecular fluorescence complementation (BIFC) protocol for rice protoplast transformation. Bio-protocol, 2013,3(2):e979. DOI: 10.21769/BioProtoc.979.
[19] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015,8:1274-1284.
pmid: 25917172
[20] Wang C L, Zhang X P, Fang Y L, Gao Y, Zhu Q L, Zheng C K, Qin T F, Li Y Q, Che J Y, Zhang M W, Yang B, Liu Y G, Zhao K J. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015,8:290-302.
doi: 10.1016/j.molp.2014.10.010 pmid: 25616388
[21] Sugio A, Yang B, Zhu T, White F F. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci USA, 2007,104:10720-10725.
pmid: 17563377
[22] Liao Z X, Ni Z, Wei X L, Chen L, Li J Y, Yu Y H, Jiang W, Jiang B L, He Y Q, Huang S. Dual RNA-seq of Xanthomonas oryzae pv. oryzicola infecting rice reveals novel insights into bacterial-plant interaction. PLoS One, 2019. DOI: 10.1371/journal. pone.0215039
doi: 10.1371/journal.pone.0235898 pmid: 32833999
[23] Li X X, Duan X P, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W L, Chen L, Yin J Y, Ma H, Wang J, Zheng D B. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol, 2006,141:1167-1184.
doi: 10.1104/pp.106.080580 pmid: 16896230
[24] Jiang G H, Xia Z H, Zhou Y L, Wan J, Li D Y, Chen R S, Zhai W X, Zhu L H. Testifying the rice bacterial blight resistance gene xa5, by genetic complementation and further analyzing xa5, (Xa5) in comparison with its homolog TFIIAγ1. Mol Genet Genomics, 2006,275:354-366.
doi: 10.1007/s00438-005-0091-7 pmid: 16614777
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!