Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2840-2852.doi: 10.3724/SP.J.1006.2022.14224

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of polyaspartic acid-chitosan on photosynthesis characteristics and yield in spring foxtail millet

WANG Qi(), XU Yan-Li, YAN Peng, DONG Hao-Sheng, ZHANG Wei, LU Lin*(), DONG Zhi-Qiang*()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2021-11-30 Accepted:2022-02-25 Online:2022-11-12 Published:2022-03-25
  • Contact: LU Lin,DONG Zhi-Qiang E-mail:2391329194@qq.com;lulin@caas.cn;dongzhiqiang@caas.cn
  • Supported by:
    The National Key Research and Development Program of China(2019YFD1001703)

Abstract:

To investigate the regulation effect of polyaspartic acid-chitosan (PAC) on photosynthetic characteristics and yield of spring foxtail millet, this experiment was conducted using foxtail millet varieties of Zhangzagu 13 (Z13) and Huayougu 9 (H9) in Gongzhuling Experimental Station of Chinese Academy of Agricultural Sciences (43º29'55"N, 124º48'43"E) in 2020 and 2021. Conventional fertilization (CN) and PAC with fertilization (PN) treatments were set under six nitrogen fertilizer application levels of 0, 75, 112.5, 150, 225, and 337.5 kg hm-2. The results showed that the photosynthetic rate, SPAD value and soluble protein content of flag leaf, net assimilation rate, leaf area duration, and crop growth rate of foxtail millet of two varieties increased first and then decreased with the increase of nitrogen application. PN could increase SPAD value and soluble protein content of flag leaf at post anthesis stage and photosynthetic rate of flag leaf at anthesis and mid-filling stage under the same nitrogen application level. Meanwhile, the net assimilation rate, leaf area duration, and crop growth rate of foxtail millet were also increased, which promoting the accumulation of population photosynthate. The increase effect of the items above was more significant under the low-middle nitrogen application levels of 75, 112.5, and 150 kg hm-2. Compared with CN, the yield of Z13 increased by 11.24%-21.55% and 8.65%-14.22% in 2020 and 2021, respectively. The yield of H9 increased by 5.53%-15.75% and 10.43%-16.17% in 2020 and 2021, respectively, compared with CN. Correlation analysis indicated that the yield was significantly positively correlated with net assimilation rate, leaf area duration, crop growth rate, and photosynthetic rate. In conclusion, PAC combined with nitrogen fertilizer could increase the ability to photosynthesize and grain yield under the background of one-time basic fertilizer application, which could be an important technique for achieving high grain yield and efficiency in foxtail millet production in China.

Key words: foxtail millet, polyaspartic acid-chitosan, photosynthesis characteristics, yield, one-time basic fertilizer application

Fig. 1

Daily precipitation and mean temperature (line) during foxtail millet growth season in 2020 and 2021"

Table 1

Different treatments and their abbreviations"

处理
Treatment
基施氮肥用量
Basic application
amount of nitrogen
(kg hm-2)
PASP含量
PASP content
(‰)
CTS含量
CTS content
(‰)
处理
Treatment
基施氮肥用量
Basic application
amount of nitrogen
(kg hm-2)
PASP含量
PASP content
(‰)
CTS含量
CTS content
(‰)
CN0 0 0 0 PN0 0 3 0.45
CN1 75.0 0 0 PN1 75.0 3 0.45
CN2 112.5 0 0 PN2 112.5 3 0.45
CN3 150.0 0 0 PN3 150.0 3 0.45
CN4 225.0 0 0 PN4 225.0 3 0.45
CN5 337.5 0 0 PN5 337.5 3 0.45

Table 2

Effects of CN and PN treatments on yield and yield components of two foxtail millet varieties under different nitrogen application levels"

年份
Year
品种
Variety
施氮水平
Nitrogen
application level
处理
Treatment
千粒重
1000-kernel weight (g)
穗数
×104 ears hm-2
穗粒数
Kernels per ear
产量
Yield (kg hm-2)
2020 Z13 N0 CN 3.01±0.01 a 54.04±7.64 d 2958.92±197.08 e 3961.28±666.41 e
PN 3.20±0.02 a 49.73±11.39 d 3120.26±717.45 e 4492.38±47.10 e
N1 CN 3.10±0.07 a 74.68±1.41 bcd 3336.44±64.81 de 5210.65±269.69 d
PN 3.16±0.01 a 82.64±6.94 abc 4469.97±169.58 bc 5833.84±115.27 cd
N2 CN 3.10±0.01 a 72.20±4.62 bcd 3219.22±139.57 de 5086.68±154.24 d
PN 3.19±0.05 a 82.53±1.30 abc 4348.85±324.25 bc 6084.11±181.29 c
N3 CN 3.11±0.04 a 88.94±0.05 ab 3808.47±97.49 cd 5704.99±228.11 cd
PN 3.05±0.09 a 101.18±9.35 a 4149.58±300.65 bc 6346.00±251.15 bc
N4 CN 3.08±0.05 a 82.30±1.93 abc 4352.51±289.94 bc 6221.06±45.78 bc
PN 3.03±0.03 a 79.75±12.27 abc 4764.54±276.44 ab 7218.13±170.15 a
N5 CN 3.04±0.06 a 61.31±2.88 cd 5171.64±121.91 a 5643.82±205.85 cd
PN 3.14±0.02 a 82.43±14.50 abc 5337.16±278.97 a 6859.80±54.30 ab
H9 N0 CN 2.77±0.06 a 42.90±2.77 c 3259.58±294.10 f 2841.87±266.10 e
PN 2.87±0.04 a 44.07±1.39 c 3179.86±397.05 f 2665.03±576.40 e
N1 CN 2.96±0.04 a 48.45±5.47 bc 3762.92±276.60 ef 4819.18±162.46 cd
PN 2.77±0.17 a 47.30±1.45 bc 5627.07±483.28 abc 5102.19±41.82 bcd
N2 CN 2.90±0.06 a 48.88±0.57 bc 3704.04±110.08 ef 4708.26±40.61 d
PN 2.71±0.16 a 54.23±5.33 ab 5970.81±488.05 ab 5449.61±182.03 ab
N3 CN 2.84±0.03 a 54.30±0.03 ab 4260.95±488.52 def 5191.22±319.75 bcd
PN 2.93±0.03 a 61.75±0.00 a 4655.47±346.73 cde 5807.44±189.45 a
N4 CN 2.87±0.05 a 49.42±0.35 bc 4304.03±28.78 def 5322.38±16.18 abc
PN 2.71±0.05 a 48.76±1.11 bc 4989.91±134.54 bcd 5573.23±114.46 ab
N5 CN 2.89±0.07 a 44.44±1.54 c 5634.94±224.43abc 5358.65±90.55 abc
PN 2.82±0.06 a 47.29±1.36 bc 6178.41±152.83 a 5654.90±225.72 ab
2021 Z13 N0 CN 2.99±0.01 a 30.61±1.57 c 2795.47±25.62 f 4401.94±86.96 g
PN 2.98±0.01 a 33.04±3.44 c 2804.69±30.94 f 4703.18±43.57 g
年份
Year
品种
Variety
施氮水平
Nitrogen
application level
处理
Treatment
千粒重
1000-kernel weight (g)
穗数
×104 ears hm-2
穗粒数
Kernels per ear
产量
Yield (kg hm-2)
N1 CN 2.98±0.01 a 53.96±3.92 b 3278.62±5.73 e 6058.60±144.94 f
PN 2.76±0.00 d 61.47±1.48 ab 3806.51±18.85 d 6920.37±115.53 e
N2 CN 2.84±0.02 bcd 54.09±0.17 b 3968.71±135.66 cd 6909.46±128.48 e
PN 2.88±0.02 b 62.08±0.24 ab 4522.32±105.31 b 7528.52±220.42 cd
N3 CN 2.80±0.05 cd 53.93±0.94 b 4405.35±315.60 bc 7431.84±166.51 cde
PN 2.92±0.01ab 67.86±7.28 a 5082.53±216.23 a 8331.60±174.92 a
N4 CN 2.79±0.03 cd 60.30±2.92 ab 3861.02±123.59 d 7554.17±154.64 cd
PN 2.84±0.02 bcd 67.82±1.00 a 4373.39±92.35 bc 8207.58±116.12 ab
N5 CN 2.84±0.05 bc 54.36±1.99 b 4448.14±100.82 b 7014.04±189.48 de
PN 2.88±0.03 bc 53.83±2.00 b 4804.27±215.53 ab 7728.81±387.39 bc
H9 N0 CN 2.78±0.04 a 31.55±3.44 e 2715.21±69.13 f 3394.46±321.84 e
PN 2.77±0.05 ab 33.33±1.11 cde 2737.97±72.11 f 3451.73±92.78 e
N1 CN 2.65±0.01 bc 43.06±1.81 ab 3253.50±14.89 e 4435.98±47.33 d
PN 2.65±0.03 bc 47.33±3.67 a 3924.53±69.32 d 4900.02±42.41 bc
N2 CN 2.72±0.04 abc 43.26±2.42 ab 3228.59±43.95 e 4582.70±157.50 cd
PN 2.68±0.06 abc 46.69±3.12 a 3836.65±46.26 d 5323.72±45.71 b
N3 CN 2.69±0.04 abc 41.50±1.97 abc 3701.82±56.01 d 5204.25±17.00 b
PN 2.74±0.01 ab 44.32±0.50 ab 4406.01±109.46 c 5878.46±78.52 a
N4 CN 2.67±0.00 abc 37.52±1.96 bcde 3848.09±126.56 d 4728.62±80.51 cd
PN 2.72±0.03 abc 40.64±1.25 abcd 4575.28±86.38 c 5221.79±154.69 b
N5 CN 2.62±0.05 c 32.37±2.72 de 5946.01±128.77 a 4590.14±171.44 d
PN 2.72±0.03 abc 33.32±4.88 cde 5452.32±240.20 b 5244.53±216.27 b

Table 3

Effects of CN and PN treatments on photosynthetic rate of flag leaf of two foxtail millet varieties under different nitrogen application levels"

品种
Variety
施氮水平Nitrogen
application level
处理Treatment 花期
Anthesis stage
(μmol CO2 m-2 s-1)
增幅
Growth rate
(%)
灌浆中期
Mid-filling stage
(μmol CO2 m-2 s-1)
增幅
Growth rate
(%)
Z13 N0 CN 21.57±0.82 e 14.83±0.19 g
PN 21.80±0.72 e 1.07 15.10±0.32 g 1.82
N1 CN 24.80±0.60 d 17.17±0.34 f
PN 28.17±0.80 b 13.58 18.87±0.52 de 9.90
N2 CN 25.77±0.35 cd 17.80±0.35 ef
PN 30.47±0.63 a 18.24 19.17±0.43 cd 7.68
N3 CN 27.00±0.32 bc 19.53±0.03 bcd
PN 31.03±0.49 a 14.94 20.97±0.33 a 7.34
N4 CN 26.50±0.06 bc 18.53±0.66 de
PN 27.27±0.09 bc 2.89 20.33±0.55 abc 9.71
N5 CN 26.70±0.40 bc 18.90±0.15 de
PN 31.07±0.52 a 16.35 20.57±0.32 ab 8.82
H9 N0 CN 18.83±0.67 e 14.53±0.15 g
PN 19.13±0.42 e 1.59 14.63±0.24 g 0.69
N1 CN 20.37±0.39 de 15.13±0.30 fg
PN 25.00±0.49 a 22.75 17.73±0.27 bc 17.18
N2 CN 21.60±0.17 cd 15.67±0.23 f
PN 25.37±0.22 a 17.44 18.67±0.23 ab 19.15
N3 CN 22.33±0.47 bc 17.63±0.45 cd
PN 25.80±1.09 a 15.52 19.17±0.27 a 8.70
N4 CN 20.20±0.55 de 16.93±0.22 de
PN 23.40±0.40 b 15.84 18.30±0.25 bc 8.07
N5 CN 20.43±0.13 de 16.67±0.37 e
PN 22.90±0.38 bc 12.07 18.33±0.09 bc 10.00

Fig. 2

Effects of CN and PN treatments on net assimilation rate of two foxtail millet varieties under different nitrogen application levels * indicates significant difference at P < 0.05 between treatments. Z13: Zhangzagu 13; H9: Huayougu 9. Treatments are the same as those given in Table 1."

Fig. 3

Effects of CN and PN treatments on leaf area duration of two foxtail millet varieties under different nitrogen application levels * indicates significant difference at P < 0.05 between treatments. Z13: Zhangzagu 13; H9: Huayougu 9. Treatments are the same as those given in Table 1."

Fig. 4

Effects of CN and PN treatments on crop growth rate of two foxtail millet varieties under different nitrogen application levels * indicates significant difference at P < 0.05 between treatments. Z13: Zhangzagu 13; H9: Huayougu 9. Treatments are the same as those given in Table 1."

Fig. 5

Effects of CN and PN treatments on SPAD value of flag leaf of two foxtail millet varieties under different nitrogen application levels * indicates significant difference at P < 0.05 between treatments. Z13: Zhangzagu 13; H9: Huayougu 9. Treatments are the same as those given in Table 1."

Fig. 6

Effects of CN and PN treatments on soluble protein content of flag leaf of two foxtail millet varieties under different nitrogen application levels * indicates significant difference at P < 0.05 between treatments. Z13: Zhangzagu 13; H9: Huayougu 9. Treatments are the same as those given in Table 1."

Table 4

Pearson correlation between yield and other characteristics"

指标
Item
产量
Yield
净光合速率
Photosynthetic rate
净同化速率
Net assimilation rate
光合势
Leaf area duration
群体生长率
Crop growth rate
SPAD值
SPAD
value
可溶性蛋白含量
Soluble protein content
产量
Yield
1.00
净光合速率
Photosynthetic rate
0.94** 1.00
净同化速率
Net assimilation rate
0.59** 0.53** 1.00
光合势
Leaf area duration
0.77** 0.78** 0.08 1.00
群体生长率
Crop growth rate
0.95** 0.91** 0.52** 0.85** 1.00
SPAD值
SPAD value
0.39 0.50* -0.29 0.84** 0.52** 1.00
可溶性蛋白含量
Soluble protein content
0.90** 0.90** 0.36 0.88** 0.92** 0.67** 1.00
[1] Lu H Y, Zhang J P, Liu K B, Wu N Q, Li Y M, Zhou K S, Ye M L, Zhang T Y, Zhang H J, Yang X J, Shen L C, Xu D K, Li Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367-7372.
doi: 10.1073/pnas.0900158106
[2] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949.
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949. (in Chinese with English abstract)
[3] 徐玖亮, 温馨, 刁现民, 张福锁, 李学贤. 我国主要谷类杂粮的营养价值及保健功能. 粮食与饲料工业, 2021, (1): 27-35.
Xu J L, Wen X, Diao X M, Zhang F S, Li X X. Nutrition values and health effects of coarse cereals in China. Cereal Feed Ind, 2021, (1): 27-35. (in Chinese with English abstract)
[4] 曾蓉. 氮肥运筹对谷子产量及品质的影响. 山西农业大学硕士学位论文, 山西太谷, 2013.
Zeng R. Effects of Nitrogen Application on Yield and Quality of Millet. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2013. (in Chinese with English abstract)
[5] 薛盈文, 苗兴芬, 王玉凤. 施氮对谷子光合特性及产量和品质的影响. 黑龙江八一农垦大学学报, 2019, 31(4): 1-7.
Xue Y W, Miao X F, Wang Y F. Effects of nitrogen application on photosynthetic, yield and quality of foxtail millet. J Heilongjiang Aug First Land Reclam Univ, 2019, 31(4): 1-7. (in Chinese with English abstract)
[6] 王海月, 李玥, 孙永健, 李应洪, 蒋明金, 王春雨, 赵建红, 孙园园, 徐徽, 严奉君, 马均. 不同施氮水平下缓释氮肥配施对机插稻氮素利用特征及产量的影响. 中国水稻科学, 2017, 31: 50-64.
doi: 10.16819/j.1001-7216.2017.6072
Wang H Y, Li Y, Sun Y J, Li Y H, Jiang M J, Wang C Y, Zhao J H, Sun Y Y, Xu H, Yan F J, Ma J. Effects of slow-release urea on nitrogen utilization and yield in mechanically-transplanted rice under different nitrogen application rates. Chin J Rice Sci, 2017, 31: 50-64. (in Chinese with English abstract)
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响. 作物学报, 2022, 48: 437-447.
doi: 10.3724/SP.J.1006.2022.01093
Xu L L, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat. Acta Agron Sin, 2022, 48: 437-447. (in Chinese with English abstract)
[8] Sheehy J E, Peng S, Dobermann A, Mitchell P L, Ferrer A, Yang J C, Zou Y B, Zhong X H, Huang J L. Fantastic yields in the system of rice intensification: fact or fallacy? Field Crops Res, 2004, 88: 1-8.
doi: 10.1016/j.fcr.2003.12.006
[9] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应. 作物学报, 2020, 46: 1617-1627.
Ma Z B, Dong X R, Tang H H, Yan P, Lu L, Wang Q Y, Fang M Y, Wang Q, Dong Z Q. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics. Acta Agron Sin, 2020, 46: 1617-1627. (in Chinese with English abstract)
[10] 丁锦峰, 陈芳芳, 王云翠, 杨佳凤, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 后期追氮时期对扬麦20花后光合物质生产力和产量的影响. 扬州大学学报(农业与生命科学版), 2012, 33(3): 56-62.
Ding J F, Chen F F, Wang Y C, Yang J F, Feng C N, Zhu X K, Li C Y, Peng Y X, Guo W S. Effects of nitrogen late topdressing stages on productivity of post-anthesis photosynthates and grain yield of Yangmai 20. J Yangzhou Univ (Agric Life Sci Edn), 2012, 33(3): 56-62. (in Chinese with English abstract)
[11] 马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. 中国农业科学, 2011, 44: 4159-4169.
Ma Q, Yang X, Li M, Li G Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin, 2011, 44: 4159-4169. (in Chinese with English abstract)
[12] 朱金英, 张书良, 李升东, 王旭清. 3种不同控释肥对夏玉米产量和氮素利用的影响. 安徽农业科学, 2020, 48(12): 161-163.
Zhu J Y, Zhang S L, Li S D, Wang X Q. Effect of three kinds of controlled-release fertilizer on maize yield and nitrogen utilization. J Anhui Agric Sci, 2020, 48(12): 161-163. (in Chinese with English abstract)
[13] 杨俊刚, 高强, 曹兵, 陈新平. 一次性施肥对春玉米产量和环境效应的影响. 中国农学通报, 2009, 25(19): 123-128.
Yang J G, Gao Q, Cao B, Chen X P. Effect of single fertilization on spring maize yield and environment. Chin Agric Sci Bull, 2009, 25(19): 123-128. (in Chinese with English abstract)
[14] Sun H F, Zhou S, Zhang J N, Zhang X X, Wang C. Effects of controlled-release fertilizer on rice grain yield, nitrogen use efficiency, and greenhouse gas emissions in a paddy field with straw incorporation. Field Crops Res, 2020, 253: 107814.
doi: 10.1016/j.fcr.2020.107814
[15] 陈立才, 李艳大, 秦战强, 黄俊宝, 吴罗发, 王康军, 周明. 侧深施用控释肥对机插中稻生长、产量及氮肥农学效率的影响. 安徽农业大学学报, 2020, 47: 839-844.
Chen L C, Li Y D, Qin Z Q, Huang J B, Wu L F, Wang K J, Zhou M. Effects of side deep apply controlled release fertilizer on growth, yield and nitrogen agronomic efficiency in transplanted middle-season rice. J Anhui Agric Univ, 2020, 47: 839-844. (in Chinese with English abstract)
[16] 谢旭东, 周国勤, 陈真真, 徐宏, 张玉博, 张波, 李刚, 李宇峰. 氮肥和播种方式对信麦9号产量和氮素利用效率的影响. 湖北农业科学, 2020, 59(2): 20-23.
Xie X D, Zhou G Q, Chen Z Z, Xu H, Zhang Y B, Zhang B, Li G, Li Y F. Effects of nitrogen fertilizer and sowing methods on yield and nitrogen use efficiency of Xinmai No. 9. Hubei Agric Sci, 2020, 59(2): 20-23. (in Chinese with English abstract)
[17] Deng F, Wang L, Mei X F, Li S X, Pu S L, Ren W J. Morphological and physiological characteristics of rice leaves in response to PASP-urea and optimized nitrogen management. Arch Agron Soil Sci, 2017, 63: 1582-1596.
doi: 10.1080/03650340.2017.1292501
[18] 唐会会. 聚天门冬氨酸(PASP)对东北春玉米氮素代谢的调控效应及其节氮机理. 中国农业科学院硕士学位论文, 北京, 2019.
Tang H H. Regulation Effects of Polyaspartic Acid (PASP) on Nitrogen Metabolism and Its Mechanism of Nitrogen Saving of Spring Maize in the Northeast China. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2019. (in Chinese with English abstract)
[19] 杨晋辉, 刘泰, 陈艳雪, 王满, 王洪媛, 刘宏斌. 聚天门冬氨酸/盐的合成、改性及应用研究进展. 材料导报, 2018, 32: 1852-1862.
Yang J H, Liu T, Chen Y X, Wang M, Wang H Y, Liu H B. Synthesis, modification and application of polyaspartic acid/salt: the state-of art technological advances. Mater Rep, 2018, 32: 1852-1862. (in Chinese with English abstract)
[20] 杜中军, 杨浩, 王树昌, 徐立, 王炳, 王康林, 李松刚, 罗海燕. 农用聚天门冬氨酸同源多肽研究进展. 热带作物学报, 2011, 32: 2381-2384.
Du Z J, Yang H, Wang S C, Xu L, Wang B, Wang K L, Li S G, Luo H Y. Advance of homologous polypeptides polyaspartic acids for agriculture. Chin J Trop Crops, 2011, 32: 2381-2384. (in Chinese with English abstract)
[21] Anusuya S, Sathiyabama M. Effect of chitosan on growth, yield and curcumin content in turmeric under field condition. Biocatal Agric Biotechnol, 2016, 6: 102-106.
doi: 10.1016/j.bcab.2016.03.002
[22] 张文清, 隋雪燕, 夏玮, 张元兴, 林彩玲. 壳寡糖的制备及其对黄瓜的促生长作用. 功能高分子学报, 2002, 15(2): 199-202.
Zhang W Q, Sui X Y, Xia W, Zhang Y X, Lin C L. Preparation of chitoligmer and its application to cucumber growth. J Func Polym, 2002, 15(2): 199-202. (in Chinese with English abstract)
[23] Nontalee C, Wasinee P, Rath P, Sittiruk R, Supachitra C. Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regul, 2015, 75: 101-114.
doi: 10.1007/s10725-014-9935-7
[24] Rutairat P, Dechakiatkrai T C. Effect of chitosan on physiology, photosynthesis and biomass of rice (Oryza sativa L.) under elevated ozone. Aust J Crop Sci, 2017, 11: 624-630.
doi: 10.21475/ajcs.17.11.05.p578
[25] Mondal M, Malek M A, Puteh A B, Ismail M R, Naher L. Effect of foliar application of chitosan on growth and yield in okra. Aust J Crop Sci, 2012, 6: 918-921.
[26] Zeng D F, Luo X R. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open J Soil Sci, 2012, 2: 282-288.
doi: 10.4236/ojss.2012.23034
[27] 李艳, 赵小明, 夏秀英, 栾雨时, 杜昱光, 李凤兰. 壳寡糖对干旱胁迫下油菜光合参数的影响. 作物学报, 2008, 34: 326-329.
doi: 10.3724/SP.J.1006.2008.00326
Li Y, Zhao X M, Xia X Y, Luan Y S, Du Y G, Li F L. Effects of oligochitosan on photosynthetic parameter of Brassica napus seedlings under drought stress. Acta Agron Sin, 2008, 34: 326-329. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00326
[28] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000. pp 56-59, 125-126.
Zou Q. Plant Physiology Experiment Guide. Beijing: China Agriculture Press, 2000. pp 56-59, 125-126. (in Chinese)
[29] Vernon A J, Allison J C S. A method of calculating net assimilation rate. Nature, 1963, 200: 814.
doi: 10.1038/200814a0
[30] 张宪政. 作物生理指标及成分测定法. 新农业, 1979, (6): 31-32.
Zhang X Z. Determination of crop physiological indexes and components. Xin Nongye, 1979, (6): 31-32. (in Chinese)
[31] 邢晓鸣, 李小春, 丁艳锋, 王绍华, 刘正辉, 唐设, 丁承强, 李刚华, 魏广彬. 缓控释肥组配对机插常规粳稻群体物质生产和产量的影响. 中国农业科学, 2015, 48: 4892-4902.
Xing X M, Li X C, Ding Y F, Wang S H, Liu Z H, Tang S, Ding C Q, Li G H, Wei G B. Effects of types of controlled released nitrogen and fertilization modes on yield and dry mass production. Sci Agric Sin, 2015, 48: 4892-4902 (in Chinese with English abstract).
[32] 高照全, 冯社章, 张显川, 程建军. 不同辐射条件下苹果叶片净光合速率模拟. 生态学报, 2012, 32(4): 33-40.
Gao Z Q, Feng S Z, Zhang X C, Cheng J J. The simulation of leaf net photosynthtic rates in different radiation in apple canopy. Acta Ecol Sin, 2012, 32(4): 33-40. (in Chinese with English abstract)
doi: 10.1016/j.chnaes.2011.06.002
[33] 张晓艳, 杜吉到, 郑殿峰, 宋春艳, 陆旺, 宋丽萍. 密度对大豆群体叶面积指数及干物质积累分配的影响. 大豆科学, 2011, 30: 96-100.
Zhang X Y, Du J D, Zheng D F, Song C Y, Lu W, Song L P. Effect of density on leaf area index, dry matter accumulation and distribution in soybean population. Soybean Sci, 2011, 30: 96-100. (in Chinese with English abstract)
[34] 孙雪芳, 丁在松, 侯海鹏, 葛均筑, 唐丽媛, 赵明. 不同春玉米品种花后光合物质生产特点及碳氮含量变化. 作物学报, 2013, 39: 1284-1292.
Sun X F, Ding Z S, Hou H P, Ge J Z, Tang L Y, Zhao M. Post- anthesis photosynthetic assimilation and the changes of carbon and nitrogen in different varieties of spring maize. Acta Agron Sin, 2013, 39: 1284-1292. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01284
[35] 杨光. 辽西地区谷子减量施氮增效栽培技术. 现代农业, 2020, (9): 34-36.
Yang G. Cultivation technique of reducing nitrogen application and increasing efficiency for millet in western Liaoning province. Mod Agric, 2020, (9): 34-36. (in Chinese)
[36] 张艾英, 郭二虎, 王军, 范惠萍, 李瑜辉, 王丽霞, 王秀清, 程丽萍. 施氮量对春谷农艺性状、光合特性和产量的影响. 中国农业科学, 2015, 48: 2939-2951.
Zhang A Y, Guo E H, Wang J, Fan H P, Li Y H, Wang L X, Wang X Q, Cheng L P. Effect of nitrogen application rate on agronomic, photosynthetic characteristics and yield of spring foxtail millet. Sci Agric Sin, 2015, 48: 2939-2951 (in Chinese with English abstract).
[37] Noodén L D, Guiamét J, John I. Senescence mechanisms. Plant Physiol, 1997, 101: 746-753.
doi: 10.1111/j.1399-3054.1997.tb01059.x
[38] 张鹏. 黄瓜叶片衰老过程中内肽酶变化及其生化特性的研究. 南京农业大学博士学位论文, 江苏南京, 2006.
Zhang P. Endopeptidases and Its Biochemistry Characters of Cucumis sativus During Leaf Senescence. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2006. (in Chinese with English abstract)
[39] 李强, 罗延宏, 余东海, 孔凡磊, 杨世民, 袁继超. 低氮胁迫对耐低氮玉米品种苗期光合及叶绿素荧光特性的影响. 植物营养与肥料学报, 2015, 21: 1132-1141.
Li Q, Luo Y H, Yu D H, Kong F L, Yang S M, Yuan J C. Effects of low nitrogen stress on photosynthetic characteristics and chlorophyll fluorescence parameters of maize cultivars tolerant to low nitrogen stress at the seedling stage. J Plant Nutr Fert, 2015, 21: 1132-1141. (in Chinese with English abstract)
[40] 曹本福, 陆引罡, 刘丽, 陈海念, 刘晓云, 祖庆学. 减施氮肥下聚天冬氨酸对烤烟生理特性及氮肥去向的影响. 水土保持学报, 2019, 33(5): 223-229.
Cao B F, Lu Y G, Liu L, Chen H N, Liu X Y, Zu Q X. Effects of polyaspartic acid on physiological characteristics and fate of nitrogen fertilizer in flue-cured tobacco with nitrogen fertilizer reduction. J Soil Water Conserv, 2019, 33(5): 223-229. (in Chinese with English abstract)
[41] 唐会会, 许艳丽, 王庆燕, 马正波, 李光彦, 董会, 董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制. 作物学报, 2019, 45: 431-442.
doi: 10.3724/SP.J.1006.2019.83056
Tang H H, Xu Y L, Wang Q Y, Ma Z B, Li G Y, Dong H, Dong Z Q. Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China. Acta Agron Sin, 2019, 45: 431-442. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83056
[42] Deng F, Wang L, Ren W J, Mei X F. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crops Res, 2014, 169: 30-38.
doi: 10.1016/j.fcr.2014.08.015
[43] Li L, Ban Z J, Li X H, Xue T. Effect of 1-methylcyclopropene and calcium chloride treatments on quality maintenance of ‘Lingwu Long’ Jujube fruit. J Food Sci Technol, 2014, 51: 700-707.
doi: 10.1007/s13197-011-0545-3 pmid: 24741163
[44] Zhang X Q, Li K C, Xing R E, Liu S, Chen X L, Yang H Y, Li P P. miRNA and mRNA expression profiles reveal insight into chitosan-mediated regulation of plant growth. J Agric Food Chem, 2018, 66: 3810-3822.
doi: 10.1021/acs.jafc.7b06081
[1] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[2] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[3] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[4] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
[5] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[6] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[7] HAN Shang-Ling, HUO Yi-Qiong, LI Hui, HAN Hua-Rui, HOU Si-Yu, SUN Zhao-Xia, HAN Yuan-Huai, LI Hong-Ying. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet [J]. Acta Agronomica Sinica, 2022, 48(7): 1645-1657.
[8] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[9] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[10] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[11] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[12] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[13] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[14] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[15] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[3] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[4] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[5] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[6] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[7] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[8] Huang Ce;Wang Tian-duo. COMPUTER SIMULATION OF BIOMASS PRODUCTION IN RICE COMMUNITY[J]. Acta Agron Sin, 1986, (01): 1 -8 .
[9] CHEN Ji-Bao;JING Rui-Lian;MAO Xin-Guo;CHANG Xiao-Ping;WANG Shu-Min. A Response of PvP5CS2 Gene to Abiotic Stresses in Common Bean[J]. Acta Agron Sin, 2008, 34(07): 1121 -1127 .
[10] LIU Wu-Ge;WANG Feng;JIN Su-Juan;ZHU Xiao-Yuan;LI Jin-Hua;LIU Zhen-Rong;LIAO Yi-Long;ZHU Man-Shan;HUANG Hui-Jun; FU Fu-Hong;LIU Yi-Bai. Improvement of Rice Blast Resistance in TGMS Line by Pyramiding of Pi-1 and Pi-2 through Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(07): 1128 -1136 .