Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3289-3301.doi: 10.3724/SP.J.1006.2023.24284

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and characterization of IbMAPKK9 gene associated with Fusarium oxysporum f. sp. batatas in sweet potato

JING Xiao-Jing1,2(), YANG Xin-Sun2, JIN Xiao-Jie2, LIU Yi3, LEI Jian2, WANG Lian-Jun2, CHAI Sha-Sha2, ZHANG Wen-Ying1,*(), JIAO Chun-Hai2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Food Crops institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
    3Horticulture College, Hainan University / Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Haikou 570228, Hainan, China
  • Received:2022-12-23 Accepted:2023-05-24 Online:2023-12-12 Published:2023-06-04
  • Contact: * E-mail: wyzhang@yangtzeu.edu.cn; E-mail: jiaoch@hotmail.com
  • Supported by:
    National Key Research and Development Program of China(2019YFD1001300);National Key Research and Development Program of China(2019YFD1001305);China Agriculture Research System of MOF and MARA(Sweetpotato, CARS-10)

Abstract:

Mitogen-activated protein kinase (MAPK) cascades are important signaling modules in all organisms, which widely exist in plants. Mitogen-activated protein kinase kinase (MAPKKs) are located in the middle of the cascade reaction pathway and play the key roles in signal divergence. The disease resistance gene IbMAPKK9 was screened and cloned based on transcriptome data in sweetpotato, which contained a 987 bp open reading frame, encoding 328 amino acids and 1 domain (PF00069). Its protein mainly consisted of α-helixes and random coils. Multiple hormones (methyl jasmonate, ethylene, abscisic acid, gibberellin, and salicylic acid) and stress-related response elements were detected in the promoter region. Homologous protein comparison showed that IbMAPKK9 was closely related to ItMAPKK9-like (XP_031110493.1), InMAPKK9-like (XP_019189439.1), SlMAPKK9 (NP_001234595.1), and StMAPKK9 (XP_006363984.1). Besides, IbMAPKK9 gene encoded nuclear localization protein. The relative expression levels revealed that IbMAPKK9 was expressed in roots, stems, leaves, and petioles in response to Fusarium oxysporum f. sp batatas (Fob) infection. Transient expression analysis showed that IbMAPKK9 induced up-regulation of 5 genes related to salicylic acid synthesis pathway and signal transduction pathway within 48 hours, suggesting that IbMAPKK9 affected plant resistance by mediating salicylic acid signal pathway. This study can provide a theoretical basis for further analysis of the biological function of IbMAPKK9.

Key words: sweet potato, IbMAPKK9, Fusarium wilt, gene clone, subcellular localization, transient expression

Table 1

Primers used in this study"

引物名称
Primer name
序列
Primer sequence (5′-3′)
IbMAPKK9-CDS-F ATGGCACTTGTTCGTGAACGT
IbMAPKK9-CDS-R TTAATTTTGTGAATTAATTTGGGATTTG
IbMAPKK9-PRO-F CTGCCAATGTGTATCACATGTTAT
IbMAPKK9-PRO-R GATGAGAAGGTAGAAGGGGAGT
IbMAPKK9-qPCR-F GCGGTCTACGCCCTCAAAG
IbMAPKK9-qPCR-R GAATATCGGAGGTGCCGTGAC
β-Actin-F AGCAGCATGAAGATTAAGGTTGTAGCAC
β-Actin-R TGGAAAATTAGAAGCACTTCCTGTGAAC
NtPAL4-F CATTGCCACATTCAGCAACA
NtPAL4-R GGGTGGTGCTTCAACTTGTG
NtICS1-F GAGGGTGCGGAAAAAAATA
NtICS1-R CCTTGATAAGCATCGGGTT
NtNPR1-F TTCTGTATCTCTTGCTATG
NtNPR1-R ATCTACTGTTGTCCTCTGT
NtNPR3-F GGGGCTACTTACCTA
NtNPR3-R TCCCTGTCTGATTCA
NtNPR5-F AAGGATGGATGGGAT
NtNPR5-R AGTTGGGTTGTTTGC

Fig. 1

Cloning of IbMAPKK9 CDS and promoter in Ipomoea batatas M: DL2000 marker; 1: CDS of IbMAPKK9 gene; 2: promoter of IbMAPKK9 gene."

Fig. 2

Distribution of IbMAPKK9 promoter cis-acting elements"

Table 2

Analysis of cis-acting elements in IbMAPKK9 promoter region"

位点名称
Site name
序列
Sequence (5′-3′)
功能
Function
ABRE ACGTG 脱落酸反应的顺式作用元件 Cis-acting element involved in abscisic acid response
ARE AAACCA 厌氧诱导反应的顺式作用调节元件 Cis-acting regulatory element essential for the anaerobic induction
ERE ATTTTAAA 乙烯响应元件 Ethylene responsive element
G-box CACGTG 参与光反应的顺式作用元件 Light responsive element
P-box CCTTTTG 赤霉素反应元件 Gibberellin-responsive element
MYB TAACCA 干旱诱导相关元件 MYB binding site involved in drought-inducibility
MYC CATGTG 逆境胁迫相关顺式调控元件 Stress related cis-regulatory elements
G-box CACGTG 茉莉酸甲酯应答元件 Cis-acting regulatory element involved in the MeJA-responsiveness

Fig. 3

Conservative domain in IbMAPKK9"

Fig. 4

Prediction of phosphorylation sites in IbMAPKK9"

Table 3

Proportion of main components of secondary structure of IbMAPKK9 (%)"

名称
Name
α-螺旋
Alpha helix
β-转角
Beta turn
无规则卷曲
Random coil
延伸链
Extended strand
IbMAPKK9 33.54 5.18 46.95 14.33

Fig. 5

Prediction of secondary structure in IbMAPKK9 protein Blue indicates α-helix (Hh); red represents extension chain (Ee); green is the β-angle (Tt); purple is for random crimp (Cc)."

Fig. 6

Prediction of 3D structure in IbMAPKK9 protein"

Fig. 7

Multiple sequence alignment and relationship of IbMAPKK9 protein A: IbMAPKK9 sequence alignment. The protein kinase domain is marked with orange underlines; B: phylogenetic tree of IbMAPKK9 proteins. The IbMAPKK9 is marked with a red star. Ib: Ipomoea batatas; It: Ipomoea triloba (XP_031110493.1); In: Ipomoea nil (XP_019189439.1); Nb: Nicotiana benthamiana (BAE95414.1); Ds: Datura stramonium (MCD7449465.1); Na: Nicotiana attenuate (XP_019267338.1); St: Solanum tuberosum (XP_006363984.1); Rs: Rosa hybrid cultivar (ALG02506.1); Cb: Capsicum baccatum (PHT53658.1); Tw: Tripterygium wilfordii (XP_038686910.1); Sl: Solanum lycopersicum (NP_001234595.1); La: Lupinus angustifolius (XP_019431663.1)."

Fig. 8

Phylogenetic tree of IbMAPKK9 and AtMAPKs"

Fig. 9

IbMAPKK9 protein interaction network"

Table 4

Basic information of predicted interacting proteins by STRING"

名称
Protein name
编号
Protein ID
注释
Protein annotation
蛋白长度
Protein length (aa)
置信度
Confidence
MPK3.0 A0A1J6KJD9 丝裂原活化蛋白激酶MAPK3
Mitogen-activated protein kinase 3
471 0.999
MPK3.1 A0A1J6IKA5 丝裂原活化蛋白激酶MAPK3
Mitogen-activated protein kinase 3
392 0.999
MPK3.2 A5H2L1 丝裂原活化蛋白激酶(Ser/Thr激酶家族)
Mitogen activated protein kinases (Ser/Thr protein kinase family)
375 0.999
NTF4.0 A0A314KXT0 丝裂原活化蛋白激酶(Ser/Thr激酶家族)
Mitogen activated protein kinases(Ser/Thr protein kinase family)
394 0.988
NTF4.1 A5H2L0 丝裂原活化蛋白激酶(Ser/Thr激酶家族)
Mitogen activated protein kinases (Ser/Thr protein kinase family)
393 0.993
MEKK1.0 A0A314L1U5 丝裂原活化蛋白激酶激酶激酶MAPKKK1
Mitogen-activated protein kinase kinase kinase 1
637 0.980
MEKK1.1 A0A1J6IHU2 丝裂原活化蛋白激酶激酶激酶MAPKKK1
Mitogen-activated protein kinase kinase kinase 1
561 0.980
NPK1.6 A0A314L7I4 丝裂原活化蛋白激酶激酶
Mitogen-activated protein kinase kinase
668 0.938
CTR1.1 A0A314KLJ0 丝氨酸蛋白激酶
Serine kinase
161 0.936
CTR1.8 A0A1J6IUT7 丝氨酸蛋白激酶
Serine kinase
827 0.936

Table 5

Subcellular location prediction of IbMAPKK9 protein"

网站
Software
细胞质
Chloroplast
细胞核
Nuclear
线粒体
Mitochondrion
细胞骨架
Cytoskelrtal
WoLF PSORT 9 1 3
PSORT II 4.3% 69.6% 21.7% 4.3%

Fig. 10

Subcellular localization of IbMAPKK9 A: null-GFP merge; B: green fluorescence of the null-GFP control; C: IbMAPKK9-GFP merge; D: green fluorescence of IbMAPKK9- GFP control."

Fig. 11

Relative expression level of IbMAPKK9 genes in different tissues Different lowercase letters indicate significant differences at P < 0.01."

Fig. 12

Relative expression level of IbMAPKK9 genes at different stages of Fusarium oxysporum f. sp. batatas infection Different uppercase letters indicate significant differences at P < 0.01."

Fig. 13

Transient expression of IbMAPKK9 genes in Nicotiana tabacum epidermal cell A: bright field of null-GFP; B: green fluorescence of null-GFP control; C: null-GFP with DAPI; D: null-GFP merge; E: bright field of IbMAPKK9-GFP; F: green fluorescence of IbMAPKK9-GFP control; G: IbMAPKK9-GFP with DAPI; H: IbMAPKK9-GFP merge."

Fig. 14

Relative expression levels of NtPLA4, NtICS1, NtNPR1, NtNPR3, and NtNPR5 in Nicotiana tabacum"

[1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003
[2] 刘中华, 林志坚, 李华伟, 邱永祥, 邱思鑫, 张鸿, 余华, 蓝春准. 甘薯蔓割病抗性相关SRAP标记的获得. 福建农业学报, 2017, 32: 639-644.
Liu Z H, Lin Z J, Li H W, Qiu Y X, Qiu S X, Zhang H, Yu H, Lan C Z. SRAP marker associated with Fusarium-wilt resistance gene in sweet potato. Fujian J Agric Sci, 2017, 32: 639-644. (in Chinese with English abstract)
[3] 方树民, 陈玉森. 福建省甘薯蔓割病现状与研究进展. 植物保护, 2004, 30(5): 19-22.
Fang S M, Chen Y S. Advances in the research of sweet potato Fusarium wilt in Fujian province. Plant Prot, 2004, 30(5): 19-22. (in Chinese with English abstract)
[4] 雷剑, 杨新笋, 郭伟伟, 苏文瑾, 王连军. 甘薯蔓割病研究进展. 湖北农业科学, 2011, 50: 4775-4777.
Lei J, Yang X S, Guo W W, Su W J, Wang L J. Advances in research on sweet potato Fusarium wilt. Hubei Agric Sci, 2011, 50: 4775-4777. (in Chinese with English abstract)
[5] 刘意, 刘泓江, 陈培茹, 杨新笋, 雷剑, 王连军, 柴沙沙, 靳晓杰, 杨圆圆, 程贤亮, 焦春海, 张文英. 甘薯响应蔓割病病原菌侵染的IbWRKY7基因克隆与表达分析. 中国农业大学学报, 2022, 27(6): 91-99.
Liu Y, Liu H J, Chen P R, Yang X S, Lei J, Wang L J, Chai S S, Jin X J, Yang Y Y, Cheng X L, Jiao C H, Zhang W Y. Cloning and expression analysis of IbWRKY7gene in response to Fusarium oxysporum f. sp. batatas infection in sweet potato. J China Agric Univ, 2022, 27(6): 91-99. (in Chinese with English abstract)
[6] Sun T, Nitta Y, Zhang Q, Wu D, Tian H, Lee J S, Zhang Y. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Rep, 2018, 19: e45324.
doi: 10.15252/embr.201745324
[7] Zhang M, Zhang S. Mitogen-activated protein kinase cascades in plant signaling. J Integr Plant Biol, 2022, 64: 301-341.
doi: 10.1111/jipb.13215
[8] Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413: 217-226.
doi: 10.1042/BJ20080625 pmid: 18570633
[9] Liu Y, Leary E, Saffaf O, Frank Baker R, Zhang S. Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development. J Integr Plant Biol, 2022, 64: 1531-1542.
doi: 10.1111/jipb.13309
[10] Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109
[11] Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266
[12] Krysan P J, Jester P J, Gottwald J R, Sussman M R. An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell, 2002, 14: 1109-1120.
doi: 10.1105/tpc.001164
[13] Beck M, Komis G, Müller J, Menzel D, Samaj J. Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell, 2010, 22: 755-771.
doi: 10.1105/tpc.109.071746
[14] Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y. The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell, 2010, 22: 3778-3790.
doi: 10.1105/tpc.110.077164
[15] Li N, Xu R, Li Y. Molecular networks of seed size control in plants. Annu Rev Plant Biol, 2019, 70: 435-463.
doi: 10.1146/annurev-arplant-050718-095851 pmid: 30795704
[16] Liu Y, Zhang D, Wang L, Li D. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol, 2013, 31: 1446-1460.
[17] Kong X, Pan J, Zhang D, Jiang S, Cai G, Wang L, Li D. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem Biophys Res Commun, 2013, 441: 964-969.
doi: 10.1016/j.bbrc.2013.11.008
[18] Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 2006, 11: 192-198.
doi: 10.1016/j.tplants.2006.02.007
[19] Zhan H, Yue H, Zhao X, Wang M, Song W, Nie X. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes, 2017, 8: 284.
doi: 10.3390/genes8100284
[20] Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One, 2012, 7: e46744.
doi: 10.1371/journal.pone.0046744
[21] Gao M, Liu J, Bi D, Zhang Z, Cheng F, Chen S, Zhang Y. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res, 2008, 18: 1190-1198.
doi: 10.1038/cr.2008.300 pmid: 18982020
[22] Qiu J L, Zhou L, Yun B W, Nielsen H B, Fiil B K, Petersen K, Mackinlay J, Loake G J, Mundy J, Morris P C. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol, 2008, 148: 212-222.
doi: 10.1104/pp.108.120006
[23] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell, 2004, 15: 141-152.
doi: 10.1016/j.molcel.2004.06.023
[24] Sethi V, Raghuram B, Sinha A K, Chattopadhyay S. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell, 2014, 26: 3343-3357.
doi: 10.1105/tpc.114.128702
[25] Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell, 2007, 19: 805-818.
doi: 10.1105/tpc.106.046581 pmid: 17369371
[26] Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke F L H, Chen S, Zhou J M. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell, 2018, 30: 1543-1561.
doi: 10.1105/tpc.17.00981
[27] Shao Y, Yu X, Xu X, Li Y, Yuan W, Xu Y, Mao C, Zhang S, Xu J. The YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair in regulating mitotic activity in root apical meristem. Mol Plant, 2020, 13: 1608-1623.
doi: 10.1016/j.molp.2020.09.004 pmid: 32916336
[28] Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell, 2017, 29: 526-542.
doi: 10.1105/tpc.16.00577
[29] Thulasi Devendrakumar K, Li X, Zhang Y. MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell Mol Life Sci, 2018, 75: 2981-2989.
doi: 10.1007/s00018-018-2839-3 pmid: 29789867
[30] Kong X, Sun L, Zhou Y, Zhang M, Liu Y, Pan J, Li D. ZmMKK4 regulates osmotic stress through reactive oxygen species scavenging in transgenic tobacco. Plant Cell Rep, 2011, 30: 2097-2104.
doi: 10.1007/s00299-011-1116-9 pmid: 21735232
[31] Wu D, Ji J, Wang G, Guan W, Guan C, Jin C, Tian X. LcMKK, a novel group A mitogen-activated protein kinase kinase gene in Lycium chinense, confers dehydration and drought tolerance in transgenic tobacco via scavenging ROS and modulating expression of stress-responsive genes. Plant Growth Regul, 2015, 76: 269-279.
doi: 10.1007/s10725-014-9998-5
[32] Cardinale F, Meskiene I, Ouaked F, Hirt H. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell, 2002, 14: 703-711.
pmid: 11910015
[33] 雷剑, 杨新笋, 苏文瑾, 王连军, 柴沙沙. 十个甘薯品种对蔓割病的抗性鉴定. 湖北农业科学, 2014, 53: 5422-5423.
Lei J, Yang X S, Su W J, Wang L J, Chai S S. Resistance identification of 10 sweetpotato varieties against Fusarium wilt. Hubei Agric Sci, 2014, 53: 5422-5423. (in Chinese with English abstract)
[34] 陈选阳, 林羽立, 张招娟, 邹为坤. 一种快速检测甘薯蔓割病抗性的方法. 福建: CN105075823A, 2015-11-25.
Chen X Y, Lin Y L, Zhang Z J, Zou W K. A rapid method for detecting the resistance of sweet potato to Fusarium wilt. Fujian: CN105075823A, 2015-11-25 (in Chinese with English abstract)
[35] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定. 作物学报, 2023, 49: 36-45.
doi: 10.3724/SP.J.1006.2023.24006
Pu X, Wang K T, Zhang N, Si H J. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.). Acta Agron Sin, 2023, 49: 36-45. (in Chinese with English abstract)
[36] Sun T, Zhang Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep, 2022, 23: e53817.
doi: 10.15252/embr.202153817
[37] Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklöf S, Till S, Bögre L, Hirt H, Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 2000, 12: 2247-2258.
pmid: 11090222
[38] Xing Y, Jia W, Zhang J.AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J, 2008, 54: 440-451.
doi: 10.1111/tpj.2008.54.issue-3
[39] Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem, 2008, 283: 26996-27006.
doi: 10.1074/jbc.M801392200
[40] Zhang L, Li Y, Lu W, Meng F, Wu C A, Guo X. Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot, 2012, 63: 3935-3951.
doi: 10.1093/jxb/ers086
[41] Wang C, Lu W, He X, Wang F, Zhou Y, Guo X, Guo X. The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol, 2016, 57: 1629-1942.
doi: 10.1093/pcp/pcw090 pmid: 27335349
[42] Ma H, Chen J, Zhang Z, Ma L, Yang Z, Zhang Q, Li X, Xiao J, Wang S. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570.
doi: 10.1111/tpj.2017.92.issue-4
[43] Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle I D, De Luca V, Després C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep, 2012, 1: 639-647.
doi: 10.1016/j.celrep.2012.05.008
[44] Zhou Y, Park S H, Chua N H. UBP12/UBP13-mediated deubiquitination of salicylic acid receptor NPR3 suppresses plant immunity. Mol Plant, 2023, 16: 232-244.
doi: 10.1016/j.molp.2022.11.008
[45] Wildermuth M C, Dewdney J, Wu G, Ausubel F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001, 414: 562-565.
doi: 10.1038/35107108
[46] Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y H, Yu J Q, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 2010, 153: 1526-1538.
doi: 10.1104/pp.110.157370
[47] Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature, 2008, 451: 789-795.
doi: 10.1038/nature06543
[48] Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J, 2007, 52: 1066-1079.
doi: 10.1111/tpj.2007.52.issue-6
[1] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[2] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[3] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[4] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[5] PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45.
[6] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[7] WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937.
[8] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[9] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[10] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[11] WANG Cui-Juan, CHAI Sha-Sha, SHI Chun-Yu, ZHU Hong, TAN Zhong-Peng, JI Jie, REN Guo-Bo. Anatomy characteristics and IbEXP1 gene expression of tuberization under ammonia nitrogen treatment in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(2): 305-319.
[12] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[13] WANG Dan-Dan, LIU Hong-Juan, WANG Hong-Xia, ZHANG Peng, SHI Chun-Yu. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3 [J]. Acta Agronomica Sinica, 2020, 46(7): 1120-1127.
[14] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[15] Yong-Chen LIU,Cheng-Cheng SI,Hong-Juan LIU,Bin-Bin ZHANG,Chun-Yu SHI. Reason exploration for soil aeration promoting photosynthate transportation between sink and source in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(3): 462-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .