Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Genotype-independent transformation technique development and application in maize

YANG Ya-Wen1,2,3,4,6, ZHU Dong-Jie3, PAN Hong3, ZHANG Yun-Tao5,6, XIA Meng-Yin5,6, HAN Bao-Zhu3,6, JIN Min-Liang3, LI Meng-Jiao3, DONG Lu-Peng3, YANG Ning1,2,6, ZHOU Ying5,6, XU Jie-Ting3,6,*, and YAN Jian-Bing1,2,4,6,   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 2 Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China; 3 XINMI Biotechnology Co., Ltd., Changzhou 213000, Jiangsu, China; 4 Yazhouwan National Laboratory, Sanya 572024, Hainan, China; 5 Institute of Agricultural Sciences of  Xishuangbanna Prefecture of Yunnan Province, Jinghong 666100, Yunnan, China; 6 Yan Jianbing Expert Workstation of Yunnan Province, Jinghong 666100, Yunnan, China
  • Received:2024-03-31 Revised:2024-06-20 Accepted:2024-06-20 Published:2024-07-11
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32321005), Yan Jianbing Expert Workstation of Yunnan Province (202305AF150111) and the Independent Innovation Fund for Agricultural Science and Technology of Jiangsu Province (CX (21)1003).  

Abstract:

The genetic transformation of maize inbred lines via Agrobacterium Tumefaciens is highly genotype-dependent. The morphogenetic genes Baby boom (Bbm) and Wuschel2 (Wus2) significantly enhance transformation efficiency and expand the range of amenable inbred lines. However, achieving transgenic seedlings remain challenging for many maize inbred lines, and the underlying mechanism remains unclear. In this study, we found that mixing the target vector with Bbm and Wus2 in a 10:1 ratio facilitates the generation of somatic embryos in most inbred lines. Transient transfection efficiency and the timing of selection are critical factors influencing the formation of somatic embryos and subsequent seedling development. By optimizing infection conditions and delaying selection, we established an efficient and rapid genetic transformation system that is not restricted by genotype. Using this system, we conducted genetic transformation on 131 inbred lines, resulting in successful transgenic plants in 104 of these lines.

Key words: maize, genetic transformation, morphogenic genes, infection efficiency, selection

 [1] 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议. 农业经济问题, 2021, 7: 415.

Chou H G, Li X H, Yu J L. China maize industry: development trends and policy suggestions. Issues Agric Econ, 2021, 7: 4–15 (in Chinese with English abstract).

 [2] Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nat Protoc, 2007, 2: 1614–1621.

 [3] Zhang Q, Zhang Y, Lu M H, Chai Y P, Jiang Y Y, Zhou Y, Wang X C, Chen Q J. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol, 2019, 181: 1441–1448.

 [4] Sylvie De Buck C D W, Montagu M V, Depicker A. Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol Plant Microbe Interact, 2000, 13: 658–665.

 [5] Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant, 2018, 54: 240–252.

 [6] Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A M, Miki B L A, Custers J B M, van Lookeren Campagne M M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14: 1737–1749.

 [7] Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamm W. Morphogenic regulators Baby Boom and wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998–2015.

 [8] Keith Lowe G H, Sun X F, Sonriza R G, Paul L, Sam E, Shane A, Kimberly G, Bill G K. Maize LEC1 improves transfromation in both maize and wheat. Plant Biotechnol, 2002: 283–284.

 [9] McFarland F L, Collier R, Walter N, Martinell B, Kaeppler S M, Kaeppler H F. A key to totipotency: Wuschel-like homeobox 2a unlocks embryogenic culture response in maize (Zea mays L.). Plant Biotechnol J, 2023, 21: 1860–1872.

 [10] Liu X, Bie X M, Lin X, Li M, Wang H, Zhang X, Yang Y, Zhang C, Zhang X S, Xiao J. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat Plants, 2023, 9: 908–925.

[1] CAO Xiao-Qing, QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao. Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize [J]. Acta Agronomica Sinica, 2024, 50(8): 1961-1970.
[2] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[3] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[4] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[5] LIANG Lu, ZHOU Bao-Yuan, GAO Zhuo-Han, WANG Rui, WANG Xin-Bing, ZHAO Ming, LI Cong-Feng. Root and shoot growth of different maize varieties in response to soil compaction stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2053-2066.
[6] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[7] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[8] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[9] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[10] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[11] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[12] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[13] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[14] TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123.
[15] SU Shuai, LIU Xiao-Wei, NIU Qun-Kai, SHI Zi-Wen, HOU Yu-Wei, FENG Kai-Jie, RONG Ting-Zhao, CAO Mo-Ju. Identification and gene cloning of leafy dwarf mutant lyd1 in maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1124-1135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!