Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Breeding objectives and strategies for maize in the Huang-Huai-Hai Region

CHEN Yong-Qiang1,WANG Ya-Fei1,XIE Hui-Ling1,ZHANG Zhan-Hui1,HEI Hong-Chao1,PENG Qiang2,YANG Xue-Li2,HE Ge-Ming3,*,TANG Ji-Hua1,*   

  1. 1 National Key Laboratory of Wheat and Maize Crop Science / the Shennong Laboratory / Henan Agricultural University, Zhengzhou 450002, Henan, China; 2 Henan Yuyu Seed Industry Co., LTD, Zhengzhou 450001, Henan, China; 3 Nanyang Seed Industry Development Center, Nanyang 473000, Henan, China
  • Received:2024-06-20 Revised:2024-09-03 Accepted:2024-09-03 Online:2024-09-09 Published:2024-09-09
  • Supported by:
    This study was supported by the National Key Research and Development Plan (2022YFD1201004), the Major Projects of Henan Province (221100110300), the Key Research Project of the Shennong Laboratory (SN01-2022-02), the Key Research and Development Projects of Henan Province (241111114300), and the Agricultural Seed Joint Research Project of Henan Province (2022010204).

Abstract:

The Huang-Huai-Hai region, the second largest maize-producing area in China, is situated in a transitional zone between the subtropical and north temperate climates. This region is characterized by a unique double cropping system of winter wheat-summer maize, which presents specific challenges for maize cultivation. The distinct ecological conditions and cropping system necessitate maize varieties with enhanced comprehensive resistance and adaptability. This paper provides a detailed analysis of the current production status and the primary issues facing maize cultivation in the Huang-Huai-Hai region. It identifies key breeding objectives, including “high yield, suitability for mechanized harvesting, early maturity, tolerance to high planting density, resilience to environmental stresses, and resistance to major diseases and pests.” Based on these objectives, the paper proposes several breeding strategies: “reducing heterosis to increase planting density, improving kernel bulk density and single-ear seed yield, incorporating multiple resistance genes to enhance disease resistance, strengthening lodging resistance by increasing the number of brace roots, and promoting earlier anther dehiscence and pollen release to avoid high temperatures.” Additionally, the paper emphasizes the importance of identifying and utilizing superior genes, advancing the development of new core germplasm resources, and establishing modern molecular breeding systems, such as genome editing and genome-wide selection. It also advocates for the creation of an innovative collaboration model among research institutes, universities, and seed enterprises to accelerate germplasm innovation, improve maize breeding efficiency, and enhance the breeding and promotion of the entire industry chain. The ultimate goal is to develop superior new maize varieties that will effectively support agricultural production in the Huang-Huai-Hai region.

Key words: the Huang-Huai-Hai region, maize, existing problems, breeding objective, strategy

[1] Li Q, Wang J C, Ye J W, Zheng X X, Xiang X L, Li C S, Fu M M, Wang Q, Zhang Z Y, Wu Y R. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell, 2017, 29: 2661–2675.

[2] 徐小曼, 王成军. 我国玉米生产要素配置效率研究: 基于黑龙江、河南和四川3个玉米主产省的调查. 玉米科学, 2023, 31(2): 174–180.

Xu X M, Wang C J. Study on allocation efficiency of corn production factors in China: based on the investigation of three major corn producing provinces, Heilongjiang, Henan, and Sichuan. J Maize Sci, 2023, 31(2): 174–180 (in Chinese with English abstract).

[3] 刘世梦倪, 宋敏. 品种改良对玉米单产的贡献率分析. 河南农业大学学报, 2021, 55: 364–371.

Liu S M N, Song M. Analysis on the contribution rate of variety improvement to corn yield. J Henan Agric Univ, 2021, 55: 364–371 (in Chinese with English abstract).

[4] 戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010, 18(1): 1–5.

Dai J R, E L Z. Scientific and technological innovation of maize breeding in China. J Maize Sci, 2010, 18(1): 1–5 (in Chinese with English abstract).

[5] Ye X X, Ye Y, Chai R S, Li J L, Ma C, Li H Y, Xiong Q Z, Gao H J. The influence of a year-round tillage and residue management model on soil N fractions in a wheat-maize cropping system in central China. Sci Rep, 2019, 9: 4767.

[6] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展. 作物学报, 2021, 47: 1843–1853.

Zhou B Y, Ge J Z, Sun X F, Han Y L, Ma W, Ding Z S, Li C F, Zhao M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Acta Agron Sin, 2021, 47: 1843–1853 (in Chinese with English abstract).

[7] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明. /收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019, 52: 1501–1517.

Zhou B Y, Ma W, Sun X F, Gao Z H, Ding Z S, Li C F, Zhao M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Sci Agric Sin, 2019, 52: 1501–1517 (in Chinese with English abstract).

[8] 任冠怡. 我国玉米主要产区生产效率分析. 河南农业大学硕士学位论文, 河南郑州, 2019.

Ren G Y. The Analysis of Corn Productivity in China Major Production Areas. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).

[9] 许海涛, 王友华, 许波, 王成业, 张海申. 黄淮海区玉米生产发展现状、存在问题及对策. 玉米科学, 2007, 15(增刊1): 160–162.

Xu H T, Wang Y H, Xu B, Wang C Y, Zhang H S. Present situation and problem in the development of corn production in Huang-Huai-Hai Valley and its countermeasure. J Maize Sci, 2007, 15(S1): 160–162 (in Chinese with English abstract).

[10] Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E D, Liu Q, Martre P, Müller C, Peng S S, Peñuelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114: 9326–9331.

[11] 刘万才, 刘振东, 黄冲, 陆明红, 刘杰, 杨清坡. 10年农作物主要病虫害发生危害情况的统计和分析. 植物保护, 2016, 42(5): 1–9.

Liu W C, Liu Z D, Huang C, Lu M H, Liu J, Yang Q P. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Prot, 2016, 42(5): 1–9 (in Chinese with English abstract).

[12] 高俊, 汪慧泉, 顾东祥, 张斯梅, 张传辉, 顾克军. 秸秆还田对土壤生态及农作物生长发育影响的研究进展. 中国农学通报, 2023, 39(30): 87–93.

Gao J, Wang H Q, Gu D X, Zhang S M, Zhang C H, Gu K J. Effects of straw returning on soil ecology and crop growth and development. Chin Agric Sci Bull, 2023, 39(30): 87–93 (in Chinese with English abstract).

[13] 范非. 浅析农村土地规模化经营现状: 以山东省济南市为例. 中国统计, 2019(4): 72–74.
Fan F. A brief analysis of the current situation of large-scale management of rural land: taking Jinan city of Shandong province as an example. China Stat, 2019, (4): 72–74 (in Chinese).

[14] 王琳颖. 乡村振兴战略下农村土地经营权流转的法律规制. 现代农业研究, 2022, 28(3): 30–32.
Wang L Y. Legal regulation of rural land management right transfer under the strategy of rural revitalization. Mod Agric Res, 2022, 28(3): 30–32 (in Chinese with English abstract).

[15] 韩占兵. 农业生产规模化经营现状、障碍与政策支持. 农村经济与科技, 2018, 29(7): 1–2.
Han Z B. Current situation, obstacles and policy support of large-scale operation of agricultural production. Rural Econ Sci Technol, 2018, 29(7): 1–2 (in Chinese).

[16] 祖祎祎. 玉米单粒播种子质量标准即将实施. 农民日报, 2021-10-26 (007).

Zu W W. The quality standard of maize single-seed sowing will be implemented soon. Farmers’ Daily, 2021-10-26 (007) (in Chinese).

[17] 孙海全, 邓奥严, 姜业成, 王立春, 尤丽娜. 玉米生产全程机械化现状和存在的问题及发展趋势. 农机科技推广, 2024, (5): 4–8.

Sun H Q, Deng A Y, Jiang Y C, Wang L C, You L N. Present situation, existing problems and development trend of corn production mechanization. Agric Mach Technol Ext, 2024, (5): 4–8 (in Chinese).

[18] 辛尚龙, 赵武云, 曲浩, 杨天, 史瑞杰, 闫治斌, 马海军. 玉米机械化收获技术现状分析及发展趋势. 农机化研究, 2024, 46(10): 9–14.

Xin S L, Zhao W Y, Qu H, Yang T, Shi R J, Yan Z B, Ma H J. Current situation analysis and development trend of maize mechanized harvesting technology. J Agric Mech Res, 2024, 46(10): 9–14 (in Chinese with English abstract).

[19] Miu P. Combine Harvesters: Theory, Modeling, and Design. BocaTaton: CRC Press Inc., 2015. pp 3–25.

[20] 王克如, 李璐璐, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张国强, 侯梁宇, 李少昆. 中国玉米机械粒收质量主要指标分析. 作物学报, 2021, 47: 2440–2449.

Wang K R, Li L L, Gao S, Wang Y Z, Huang Z F, Xie R Z, Ming B, Hou P, Xue J, Zhang G Q, Hou L Y, Li S K. Analysis of main quality index of corn harvesting with combine in China. Acta Agron Sin, 2021, 47: 2440–2449 (in Chinese with English abstract).

[21] 胥丽艳. 玉米机械化收获损失影响因素分析. 农机使用与维修, 2023, (10): 79–81.

Xu L Y. Analysis of factors influencing losses in mechanized corn harvesting. Agric Mach Using Maint, 2023, (10): 79–81 (in Chinese with English abstract).

[22] Wu Y R, Messing J. RNA interference can rebalance the nitrogen sink of maize seeds without losing hard endosperm. PLoS One, 2012, 7: e32850.

[23] Vasal S K, Villegas E, Bjarnason M, Gelaw B, Goertz P. Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. Proceedings of the Improvement of Quality Traits of Maize for Grain and Silage Use, 1980. pp 37–73.

[24] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势. 作物学报, 2023, 49: 2064–2076.

Bai Y, Gao T T, Lu S, Zheng S B, Lu M. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020. Acta Agron Sin, 2023, 49: 2064–2076 (in Chinese with English abstract).

[25] Mansfield B D, Mumm R H. Survey of plant density tolerance in U.S. maize germplasm. Crop Sci, 2014, 54: 157–173.

[26] Wang Y B, Bao J X, Wei X, Wu S W, Fang C W, Li Z W, Qi Y C, Gao Y X, Dong Z Y, Wan X Y. Genetic structure and molecular mechanisms underlying the formation of tassel, anther, and pollen in the male inflorescence of maize (Zea mays L.). Cells, 2022, 11: 1753.

[27] 任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016, 42: 1864–1872.

Ren B Z, Li L L, Dong S T, Liu P, Zhao B, Yang J S, Wang D B, Zhang J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Acta Agron Sin, 2016, 42: 1864–1872 (in Chinese with English abstract).

[28] Wang H H, Huang Y C, Xiao Q, Huang X, Li C S, Gao X Y, Wang Q, Xiang X L, Zhu Y D, Wang J C, Wang W Q, Larkins B A, Wu Y R. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun, 2020, 11: 5346.

[29] Wang H Q, Wang K, Du Q G, Wang Y F, Fu Z Y, Guo Z Y, Kang D M, Li W X, Tang J H. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol, 2018, 218: 1233–1246.

[30] Wang H C, Sayyed A, Liu X Y, Yang Y Z, Sun F, Wang Y, Wang M D, Tan B C. SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. J Integr Plant Biol, 2020, 62: 777–792.

[31] Huang Y C, Wang H H, Huang X, Wang Q, Wang J C, An D, Li J Q, Wang W Q, Wu Y R. Maize VKS1 regulates mitosis and cytokinesis during early endosperm development. Plant Cell, 2019, 31: 1238–1256.

[32] Zhang S S, Zhan J P, Yadegari R. Maize opaque mutants are no longer so opaque. Plant Reprod, 2018, 31: 319–326.

[33] Chen G S, Zhang B, Ding J Q, Wang H Z, Deng C, Wang J L, Yang Q H, Pi Q Y, Zhang R Y, Zhai H Y, Dong J F, Huang J S, Hou J B, Wu J H, Que J M, Zhang F, Li W Q, Min H X, Tabor G, Li B L, Liu X G, Zhao J R, Yan J B, Lai Z B. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nat Commun, 2022, 13: 4392.

[34] Deng C, Leonard A, Cahill J, Lv M, Li Y R, Thatcher S, Li X Y, Zhao X D, Du W J, Li Z, Li H M, Llaca V, Fengler K, Marshall L, Harris C, Tabor G, Li Z M, Tian Z Q, Yang Q H, Chen Y H, Tang J H, Wang X T, Hao J J, Yan J B, Lai Z B, Fei X H, Song W B, Lai J S, Zhang X C, Shu G P, Wang Y B, Chang Y X, Zhu W L, Xiong W, Sun J, Li B L, Ding J Q. The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Mol Plant, 2022, 15: 904–912.

[35] Mu X H, Dai Z Z, Guo Z Y, Zhang H, Yang J P, Gan X K, Li J K, Liu Z H, Tang J H, Gou M Y. Systematic dissection of disease resistance to southern corn rust by bulked-segregant and transcriptome analysis. Crop J, 2022, 10: 426–435.

[36] Ren W, Zhao L F, Liang J X, Wang L F, Chen L M, Li P C, Liu Z GLi X JZhang Z H, Li J P, He K H, Zhao Z, Ali F, Mi G H, Yan J B, Zhang F S, Chen F J, Yuan L X, Pan Q C. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nat Plants, 2022, 8: 1408–1422.

[37] 霍治国, 张海燕, 李春晖, 孔瑞, 江梦圆. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34: 1–14.
Huo Z G, Zhang H Y, Li C HKong R, Jiang M Y. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34: 1–14 (in Chinese with English abstract).

[38] 降志兵, 陶洪斌, 吴拓, 王璞, 宋庆芳. 高温对玉米花粉活力的影响. 中国农业大学学报, 2016, 21(3): 25–29.
Jiang Z B, Tao H B, Wu T, Wang P, Song Q F. Effects of high temperature on maize pollen viability. J China Agric Univ, 2016, 21(3): 25–29 (in Chinese with English abstract).

[39] 杨国虎. 玉米花粉花丝耐热性研究进展. 种子, 2005, 24(2): 47–51.

Yang G H. The progress of pollens and silks thermotolerance in Maize. Seed, 2005, 24(2): 47–51 (in Chinese).

[40] Djalovic I, Kundu S, Bahuguna R N, Pareek A, Raza A, Singla-Pareek S L, Prasad P V V, Varshney R K. Maize and heat stress: physiological, genetic, and molecular insights. Plant Genome, 2024, 17: e20378.

[41] Zenda T, Wang N, Dong A Y, Zhou Y Z, Duan H J. Reproductive-stage heat stress in cereals: impact, plant responses and strategies for tolerance improvement. Int J Mol Sci, 2022, 23: 6929.

[42] 穆心愿, 马智艳, 卢良涛, 吕姗姗, 刘天学, 胡秀丽, 李树岩, 蒋寒涛, 范艳萍, 赵霞, 唐保军, 夏来坤. 授粉期高温胁迫对夏玉米植株形态、叶片光合及产量的影响. 中国生态农业学报, 2024, 32: 106–118.

Mu X Y, Ma Z Y, Lu L T, Lyu S S, Liu T X, Hu X L, Li S Y, Jiang H T, Fan Y P, Zhao X, Tang B J, Xia L K. Effects of high temperature stress during pollination on plant morphology, leaf photosynthetic characteristics and yield of summer maize. Chin J Eco-Agric, 2024, 32: 106–118 (in Chinese with English abstract). 

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!