Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Construction of a meiotic progression identification system in cotton and analysis of its response to high-temperature stress

LI Ya-Wei**,XU Ying-Ying**,ZUO Chun-Yang,LIU Ruo-Nan,LIANG Ya-Jun,KONG Jie,ZHANG Xian-Long,MIN Ling*   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2025-03-20 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-15
  • Contact: 闵玲, E-mail: lingmin@mail.hzau.edu.cn E-mail:liyawei@webmail.hzau.edu.cn
  • Supported by:
    This study was supported by the “Unveiling and Commanding” Major Agronomic Traits and Molecular Design Breeding in Cotton Varieties of Xinjiang Uyghur Autonomous Region (2023A01-3), the Projects Sponsored by the Development Fund for Xinjiang Talents “Exploration and Breeding Application of Key Genes for High-Quality, Heat-Resistant Cotton” (202403-03), and the Hubei Provincial Outstanding Youth Fund-Genetic Mechanism Analysis and Breeding Application of Cotton in Response to High Temperature Stress (2024AFA059).

Abstract:

High-temperature stress has become a critical factor disrupting cotton meiosis and reducing yield. In this study, using the cotton transformation receptor material ‘Jin 668’, we systematically established a reliable method for identifying meiotic progression in cotton by optimizing protocols for hydrochloric acid hydrolysis, enzymatic digestion, and acetic acid maceration of cotton flower buds. This optimized system effectively minimized interference from impurities during slide preparation. By examining the morphology of microspore mother cells and chromosomes in buds of varying lengths, we clarified the relationship between bud length and meiotic stage, and characterized cellular and chromosomal features across key stages, including prophase I, metaphase I, anaphase I, telophase I, metaphase II, anaphase II, and telophase II. Our results indicate that high-temperature stress significantly affects the early stages of prophase I, leading to abnormal chromosome condensation, failure of homologous pairing, disrupted crossover recombination, and ultimately defective microspore development. The identification system we developed provides a robust technical foundation for further investigation into cotton meiosis and its response to high-temperature stress, offering valuable strategies for breeding heat-tolerant cotton varieties and facilitating genetic improvement efforts.

Key words: cotton, high-temperature response, meiosis, chromosome behavior, slide preparation technique

[1] Heino M, Kinnunen P, Anderson W, Ray D K, Puma M J, Varis O, Siebert S, Kummu M. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Sci Rep, 2023, 13: 3583.

[2] De Storme N, Copenhaver G P, Geelen D. Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol, 2012, 160: 18081826.

[3] Wang J, Li D L, Shang F N, Kang X Y. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci Rep, 2017, 7: 5281.

[4] Lei X N, Ning Y J, Eid Elesawi I, Yang K, Chen C L, Wang C, Liu B. Heat stress interferes with chromosome segregation and cytokinesis during male meiosis in Arabidopsis thaliana. Plant Signal Behav, 2020, 15: 1746985.

[5] 石春林, 骆宗强, 江敏, 侍永乐, 李映雪, 宣守丽, 刘杨, 杨沈斌, 于庚康. 减数分裂期高温对水稻穗粒数影响的定量分析. 中国水稻科学, 2017, 31: 658–664.

Shi C L, Luo Z Q, Jiang M, Shi Y L, Li Y X, Xuan S L, Liu Y, Yang S B, Yu G K. An quantitative analysis of high temperature effects during meiosis stage on rice grain number per panicle. Chin J Rice Sci, 2017, 31: 658–664 (in Chinese with English abstract).

[6] Ning Y J, Liu Q P, Wang C, Qin E D, Wu Z H, Wang M H, Yang K, Elesawi I E, Chen C L, Liu H, et al. Heat stress interferes with formation of double-strand breaks and homolog Synapsis. Plant Physiol, 2021, 185: 17831797.

[7] Fu H Q, Zhao J Y, Ren Z M, Yang K, Wang C, Zhang X H, Elesawi I E, Zhang X H, Xia J, Chen C L, et al. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. Plant Physiol, 2022, 188: 12101228.

[8] Fu H, Yang K, Zhang X H, Zhao J Y, Elesawi I E, Liu H, Xia J, Yu G H, Chen C L, Wang C, et al. Mechanistic insights of high temperature-interfered meiosis in autotetraploid Arabidopsis thaliana. bioRxiv, 2021-05. Print.

[9] Li Y L, Ma H H, Wu Y L, Ma Y Z, Yang J, Li Y W, Yue D D, Zhang R, Kong J, Lindsey K, et al. Single-cell transcriptome atlas and regulatory dynamics in developing cotton anthers. Adv Sci, 2024, 11: e2304017. 

[10] 高居荣, 宋雪皎, 王树芸, 韩秀兰, 谷淑波, 樊广华, 张吉旺. 花粉母细胞减数分裂细胞及染色体变化研究. 实验室科学, 2017, 20(6): 69.

Gao J R, Song X J, Wang S Y, Han X L, Gu S B, Fan G H, Zhang J W. Study on the changes of cells and chromosomes in pollen mother cells meiosis. Lab Sci, 2017, 20(6): 69 (in Chinese with English abstract).

[11] 辛昊阳, 兰月, 施季森, 戴兆霞, 席梦利. 高质量杨树粗线期染色体制片及荧光原位杂交. 分子植物育种, 2016, 14: 655–659.

Xin H Y, Lan Y, Shi J S, Dai Z X, Xi M L. The high quality slides of pachytene chromosome preparation and fluorescence in situ hybridization in Populus deltoides. Mol Plant Breed, 2016, 14: 655–659 (in Chinese with English abstract). 

[12] Wang Y Z, Zhao Q Z, Qin X D, Yang S Q, Li Z A, Li J, Lou Q F, Chen J F. Identification of all homoeologous chromosomes of newly synthetic allotetraploid Cucumis × hytivus and its wild parent reveals stable subgenome structure. Chromosoma, 2017, 126: 713728.

[13] Xin H Y, Zhang T, Han Y H, Wu Y F, Shi J S, Xi M L, Jiang J M. Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma, 2018, 127: 313321.

[14] Azumi Y, Toyama T, Igarashi A, Suzuki H. A sensitive fluorescence in situ hybridization procedure applicable to whole stages of male meiosis of Arabidopsis thaliana. Chromosome Sci, 2001, 5: 16.

[15] 康向阳, 朱之悌, 张志毅. 毛白杨花粉母细胞减数分裂及其进程的研究. 北京林业大学学报, 2000, 22(6): 57.

Kang X Y, Zhu Z D, Zhang Z Y. Meiosis and its stages of pollen mother cells in Chinese white poplar. J Beijing For Univ, 2000, 22(6): 57 (in Chinese with English abstract).

[16] 张志胜, 卢永根, 刘向东, 冯九焕. 水稻小孢子形成和发育过程中胼胝质的动态变化. 作物学报, 2007, 33: 12931298.

Zhang Z S, Lu Y G, Liu X D, Feng J H. Dynamic changes of callose in microsporogenesis and microgametogenesis of rice (Oryza sativa L.). Acta Agron Sin, 2007, 33: 12931298(in Chinese with English abstract).

[17] 徐婉约, 王应祥. 染色体展片法观察拟南芥雄性减数分裂过程中的染色体形态. 植物学报, 2019, 54: 620624.

Xu W Y, Wang Y X. Chromosome behaviors of male meiocytes by chromosome spread in Arabidopsis thaliana. Chin Bull Bot, 2019, 54: 620624 (in Chinese with English abstract).

[18] Li Y F, Huang Y M, Sun H Y, Wang T Y, Ru W, Pan L L, Zhao X M, Dong Z B, Huang W, Jin W W. Heat shock protein 101 contributes to the thermotolerance of male meiosis in maize. Plant Cell, 2022, 34: 37023717. 

[19] 葛洁, 张月乔, 田树娟, 袁黎. 西瓜花粉母细胞减数分裂进程观察. 中国瓜菜, 2020, 33(3): 1622.

Ge J, Zhang Y Q, Tian S J, Yuan L. Observation on meiosis process of watermelon pollen mother cell. China Cucurbits Veg, 2020, 33(3): 1622 (in Chinese with English abstract).

[20] Yan H, Han J L, Jin S K, Han Z G, Si Z F, Yan S Y, Xuan L S, Yu G R, Guan X Y, Fang L, et al. Post-polyploidization centromere evolution in cotton. Nat Genet, 2025, 57: 10211030.

[21] 王君, 康向阳, 李代丽, 景艳春, 张正海. 通辽杨花粉母细胞减数分裂及其染色体行为研究. 西北植物学报, 2006, 26: 22312238.

Wang J, Kang X Y, Li D L, Jing Y C, Zhang Z H. Meiosis and chromosome behavior of pollen mother cell in Populus simonii Carr. × P.nigra L. ‘Tongliao’. Acta Bot Boreali-Occident Sin, 2006, 26: 22312238 (in Chinese with English abstract).

[22] 祁传磊, 李开隆, 肖静, 李志新, 靳春莲, 滕文华. 大青杨花粉母细胞减数分裂及其发育. 东北林业大学学报, 2009, 37(3): 7275.

Qi C L, Li K L, Xiao J, Li Z X, Jin C L, Teng W H. Meiosis of pollen mother cells and pollen development of Populus ussuriensis. J Northeast For Univ, 2009, 37(3): 7275 (in Chinese with English abstract). 

[23] d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R. Turning meiosis into mitosis. PLoS Biol, 2009, 7: e1000124. 

[24] Wang C, Liu Q, Shen Y, Hua Y F, Wang J J, Lin J R, Wu M G, Sun T T, Cheng Z K, Mercier R, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol, 2019, 37: 283286. 

[25] Wang Y Z, Fuentes R R, van Rengs W M J, Effgen S, Zaidan M W A M, Franzen R, Susanto T, Fernandes J B, Mercier R, Underwoodbiao C J. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. Nat Genet, 2024, 56: 10751079.

[1] GUO Dong-Cai, LYU Tao, CAI Yong-Sheng, MAI WU-LU-DA·AI He-Mai-Ti, CHEN Quan-Jia, QU Yan-Ying, ZHENG Kai. Meta-analysis of QTL and identification of candidate genes for fiber quality in cotton [J]. Acta Agronomica Sinica, 2025, 51(6): 1445-1466.
[2] WANG Ya-Wen, QI Zheng-Yang, YOU Jia-Qi, NIE Xin-Hui, CAO Juan, YANG Xi-Yan, TU Li-Li, ZHANG Xian-Long, WANG Mao-Jun. Preparation of cotton 60K functional locus gene chip and its application to genetic research [J]. Acta Agronomica Sinica, 2025, 51(5): 1178-1188.
[3] XIE Zhang-Shu, XIE Xue-Fang, TU Xiao-Ju, LIU Ai-Yu, DONG He-Zhong, ZHOU Zhong-Hua. Research progress in phytohormone regulation of square and boll shedding in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 1-29.
[4] XIN Ming-Hua, MI Ya-Di, WANG Guo-Ping, LI Xiao-Fei, LI Ya-Bing, DONG He-Lin, HAN Ying-Chun, FENG Lu. Effect of row spacing configuration and density regulation on dry matter production and yield in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 221-232.
[5] LI Chao, FU Xiao-Qiong. Comprehensive evaluation of regional trial varieties of medium mature hybrid cotton in the Yellow River Basin based on GYT biplot [J]. Acta Agronomica Sinica, 2025, 51(1): 30-43.
[6] AI Sha, LI Sha, FANG Zhi-Wei, LI Lun, LI Tian-Tian, GAO Li-Fen, CHEN Li-Hong, XIAO Hua-Feng, WAN Ren-Jing, YAN Duo-Zi, WU Xing-Ting, PENG Hai, HAN Rui-Xi, ZHOU Jun-Fei. Development and application of cotton MNP marker for fingerprint cons- truction [J]. Acta Agronomica Sinica, 2024, 50(9): 2267-2278.
[7] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[8] XU Ze, WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton [J]. Acta Agronomica Sinica, 2024, 50(6): 1584-1596.
[9] LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157.
[10] LE Yu, WANG Tao, ZHANG Xian-Long, LIN Zhong-Xu. Screening of regeneration capacity and genetic transformation efficiency in recombinant inbred lines of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1172-1180.
[11] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[12] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[13] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[14] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[15] WANG Yong-Hui, HE Jiang, ZHANG Xiang-Xiang, LOU Xiang-Di, GAO Jing, SUN Yan-Ru, CAO Ting, SHI Yang. Mechanism of reduced insecticidal protein expression in Bt cotton under low-iron stress based on transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(12): 2971-2983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!