WANG Chen1,2,HE Dan1,2,YAO Min1,2,QIU Ping1,2,HE Xin1,2,XIONG Xing-Hua1,2,KANG Lei1,2,LIU Zhong-Song1,2,QIAN Lun-Wen1,2,*
[1] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953. [2] Ziolkowski P A, Kaczmarek M, Babula D, Sadowski J. Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J, 2006, 47: 63–74. [3] Amasino R. Seasonal and developmental timing of flowering. Plant J, 2010, 61: 1001–1013. [4] Kobayashi Y, Weigel D. Move on up, it’s time for change: mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007, 21: 2371–2384. [5] Cho L H, Yoon J, An G. The control of flowering time by environmental factors. Plant J, 2017, 90: 708–719. [6] Song Y H, Shim J S, Kinmonth-Schultz H A, Imaizumi T. Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol, 2015, 66: 441–464. [7] Andrés F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 2012, 13: 627–639. [8] Casal J J, Qüesta J I. Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol, 2018, 217: 1029–1034. [9] Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot, 2014, 114: 1445–1458. [10] Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 1999, 11: 949–956. [11] Sheldon C C, Rouse D T, Finnegan E J, Peacock W J, Dennis E S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA, 2000, 97: 3753–3758. [12] Bastow R, Mylne J S, Lister C, Lippman Z, Martienssen R A, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 2004, 427: 164–167. [13] Alexandre C M, Hennig L. FLC or not FLC: the other side of vernalization. J Exp Bot, 2008, 59: 1127–1135. [14] Michaels S D, Himelblau E, Kim S Y, Schomburg F M, Amasino R M. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol, 2005, 137: 149–156. [15] Sheldon C C, Jean Finnegan E, Dennis E S, James Peacock W. Quantitative effects of vernalization on FLC and SOC1 expression. Plant J, 2006, 45: 871–883. [16] Bond D M, Dennis E S, Jean Finnegan E. Hypoxia: a novel function for VIN3. Plant Signal Behav, 2009, 4: 773–776. [17] Searle I, He Y H, Turck F, Vincent C, Fornara F, Kröber S, Amasino R A, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev, 2006, 20: 898–912.
[18] 魏大勇. 甘蓝型油菜遗传结构分析和选择驯化研究. 西南大学博士学位论文, 重庆, 2015. [19] Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, et al. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ, 2016, 39: 1228–1239. [20] Huang L Y, Min Y, Schiessl S, Xiong X H, Jan H U, He X, Qian W, Guan C Y, Snowdon R J, Hua W, et al. Integrative analysis of GWAS and transcriptome to reveal novel loci regulation flowering time in semi-winter rapeseed. Plant Sci, 2021, 310: 110980. [21] Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Große I, Schiessl S, Jung C, Emrani N. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Plant Cell Environ, 2018, 41: 1935–1947. [22] Marc Jones D, Wells R, Pullen N, Trick M, Irwin J A, Morris R J. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. Plant J, 2018, 96: 103–118. [23] Marc Jones D, Olson T S G, Pullen N, Wells R, Irwin J A, Morris R J. The oilseed rape developmental expression resource: a resource for the investigation of gene expression dynamics during the floral transition in oilseed rape. BMC Plant Biol, 2020, 20: 344. [24] Childs K L, Davidson R M, Robin Buell C. Gene coexpression network analysis as a source of functional annotation for rice genes. PLoS One, 2011, 6: e22196. [25] Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol, 2017, 585: 135–158. [26] 谷思宇, 杨晓梅, 贺俊崎. CRISPR/Cas9基因编辑技术: 基因剪刀: 重写生命密码的工具: 2020年诺贝尔化学奖简介. 首都医科大学学报, 2020, 41: 1014–1018. Gu S Y, Yang X M, He J Q. CRISPR/Cas9 gene editing technology: gene scissors: a tool for rewriting the code of life: an introduction to the 2020 Nobel Prize in Chemistry. J Capital Medical Univ, 2020, 41: 1014–1018 (in Chinese with English abstract) [27] Wang L W, Sun S, Wu T T, Liu L P, Sun X G, Cai Y P, Li J C, Jia H C, Yuan S, Chen L, et al. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J, 2020, 18: 1869–1881. [28] Min Y C, He S C, Wang X, Hu H, Wei S H, Ge A K, Jiang L X, Yang S Q, Guo Y, Liu Z J, et al. Transcription factors BnaC09.FUL and BnaC06.WIP2 antagonistically regulate flowering time under long-day conditions in Brassica napus. J Genet Genomics, 2025, 52: 650–665. [29] 李东昊, 姜玲, 刘春林, 阮颖. 甘蓝型油菜BnaSDG8基因CRISPR/Cas9敲除载体的构建及功能探究. 湖南农业大学学报(自然科学版),2018, 44(4): 346–352. Li D H, Jiang L, Liu C L, Ruan Y. Construction of CRISPR/Cas9 knockout vector BnaSDG8 and its genetic transformation in Brassica napus. J Hunan Agric Univ (Nat Sci), 2018, 44(4): 346–352 (in Chinese with English abstract). [30] Xiang X R, Qiu P, Mei Z C, Yao M, Liu W, He D, Cao S, He X, Xiong X H, Liu Z S, et al. Genome-wide association study and transcriptome analysis reveal natural variation of key genes regulation flowering time in rapeseed. Mol Breed, 2024, 44: 40. [31] Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884–i890. [32] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357–360. [33] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. [34] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742. [35] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559. [36] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498–2504. [37] Liu H, Ding Y D, Zhou Y Q, Jin W Q, Xie K B, Chen L L. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant, 2017, 10: 530–532.
[38] 刘询, 张斌, 李浪, 刘春林, 阮颖. 甘蓝型油菜BnaLCR23基因CRISPR-Cas9表达载体的构建及遗传转化. 分子植物育种, 2017, 15: 3024–3029.
[39] 张哲, 殷艳, 刘芳, 王积军, 傅廷栋. 我国油菜多功能开发利用现状及发展对策. 中国油料作物学报, 2018, 40: 618–623. [40] Geraldo N, Bäurle I, Kidou S I, Hu X Y, Dean C. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol, 2009, 150: 1611–1618. [41] Helal M, Gill R A, Tang M Q, Yang L, Hu M, Yang L L, Xie M L, Zhao C J, Cheng X H, Zhang Y Y, et al. SNP- and haplotype-based GWAS of flowering-related traits in Brassica napus. Plants, 2021, 10: 2475. [42] Xu Y, Zhang B B, Ma N, Liu X, Qin M F, Zhang Y, Wang K, Guo N, Zuo K F, Liu X, et al. Quantitative trait locus mapping and identification of candidate genes controlling flowering time in Brassica napus L. Front Plant Sci, 2021, 11: 626205. [43] Tudor E H, Marc Jones D, He Z S, Bancroft I, Trick M, Wells R, Irwin J A, Dean C. QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol J, 2020, 18: 2466–2481. [44] Hines P J. Tic TOC1 plant clock. Sci Signal, 2012, 5: ec108. [45] Li X, Ma D B, Lu S X, Hu X Y, Huang R F, Liang T, Xu T D, Tobin E M, Liu H T. Blue light- and low temperature-regulated COR27 and COR28 play roles in the Arabidopsis circadian clock. Plant Cell, 2016, 28: 2755–2769. [46] Qi P L, Zhou H R, Zhao Q Q, Feng C, Ning Y Q, Su Y N, Cai X W, Yuan D Y, Zhang Z C, Su X M, et al. Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis. Nucleic Acids Res, 2022, 50: 7380–7395. [47] Yang M K, Lin W J, Xu Y R, Xie B Y, Yu B Y, Chen L, Huang W. Flowering-time regulation by the circadian clock: from Arabidopsis to crops. Crop J, 2024, 12: 17–27. [48] Wang F, Han T W, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol, 2024, 7: 579. [49] Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot, 2010, 61: 2247–2254. [50] Liu Y W, Li X, Ma D B, Chen Z R, Wang J W, Liu H T. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering. EMBO Rep, 2018, 19: e45762. [51] Shin Y H, Lee H M, Park Y D. CRISPR/Cas9-Mediated Editing of AGAMOUS-like Genes Results in a Late-Bolting Phenotype in Chinese Cabbage (Brassica rapa ssp. pekinensis). Int J Mol Sci, 2022, 23: 15009. [52] Yu J W, Rubio V, Lee N Y, Bai S L, Lee S Y, Kim S S, Liu L J, Zhang Y Y, Irigoyen M L, Sullivan J A, et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell, 2008, 32: 617–630. [53] Li Z C, Fu X, Wang Y Z, Liu R Y, He Y H. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants. Nat Genet, 2018, 50: 1254–1261. [54] Lee J H, Yoo S J, Park S H, Hwang I, Lee J S, Ahn J H. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev, 2007, 21: 397–402. |
[1] | WANG Qiong, ZOU Dan-Xia, CHEN Xing-Yun, ZHANG Wei, ZHANG Hong-Mei, LIU Xiao-Qing, JIA Qian-Ru, WEI Li-Bin, CUI Xiao-Yan, CHEN Xin, WANG Xue-Jun, CHEN Hua-Tao. Genome-wide association analysis and candidate genes prediction of flowering time and maturity date traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1558-1568. |
[2] | LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408. |
[3] | ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631. |
[4] | XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585. |
[5] | ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556. |
[6] | LI Jia-Xin, HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing. Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(1): 44-57. |
[7] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[8] | XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156. |
[9] | ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235. |
[10] | CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146. |
[11] | ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956. |
[12] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
[13] | WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632. |
[14] | LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622. |
[15] | ZHANG Jin-Hui, XIAO Zi-Yi, LI Xu-Hua, ZHANG Ming, JIA Chun-Lan, PAN Zhen-Yuan, QIU Fa-Zhan. Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2 [J]. Acta Agronomica Sinica, 2024, 50(12): 3144-3154. |
|