Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Transcriptome-based identification of flowering candidate genes and functional characterization of BnaCOR27 in Brassicaapus

WANG Chen1,2,HE Dan1,2,YAO Min1,2,QIU Ping1,2,HE Xin1,2,XIONG Xing-Hua1,2,KANG Lei1,2,LIU Zhong-Song1,2,QIAN Lun-Wen1,2,*   

  1. 1 Agricultural College, Hunan Agricultural University, Changsha 410128, Hunan, China; 2 Yuelu Mountain Laboratory, Changsha 410082, Hunan, China
  • Received:2025-01-16 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-22
  • Contact: 钱论文, E-mail: qianlunwen@163.com E-mail:1048162651@qq.com
  • Supported by:
    This study was supported by the Hunan province science and technology innovation leading talent project, China (2023RC1063), and the Training Program for Excellent Young Innovators of Changsha, China (kq2107016).

Abstract:

Flowering is a critical developmental transition in higher plants, marking the shift from vegetative to reproductive growth, and it directly influences biomass accumulation and seed yield. To elucidate the regulatory network underlying vernalization in Brassica napus and identify key candidate genes, we analyzed the transcriptomes of leaves from seven rapeseed varieties before and after vernalization. A total of 1305 differentially expressed genes (DEGs) were identified, including 554 upregulated and 751 downregulated genes. GO enrichment analysis showed that these DEGs were primarily involved in biological processes such as the vernalization pathway, photoperiod pathway, circadian rhythm, flower development, and response to cold. Further analysis revealed differential expression in 96 flowering-related genes, including BnaVIN3, BnaFLC, BnaCOR27, among others. Additionally, genome-wide association studies (GWAS) indicated that BnaCOR27-C04 is significantly associated with flowering time. Integration with weighted gene co-expression network analysis (WGCNA) suggested that BnaCOR27 may interact with genes such as BnaFLC, BnaFT, and BnaVIN3, forming a potential regulatory network controlling flowering time in rapeseed. Furthermore, CRISPR/Cas9-mediated knockout of BnaCOR27 resulted in an early-flowering phenotype in T3 transgenic plants. These findings enhance our understanding of flowering regulation in B. napus and provide a genetic foundation for improving flowering-related traits in future breeding efforts.

Key words: Brassica napus, flowering, transcriptome analysis, GWAS, BnaCOR27

[1] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953.

[2] Ziolkowski P A, Kaczmarek M, Babula D, Sadowski J. Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J, 2006, 47: 63–74.

[3] Amasino R. Seasonal and developmental timing of flowering. Plant J, 2010, 61: 1001–1013.

[4] Kobayashi Y, Weigel D. Move on up, it’s time for change: mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007, 21: 2371–2384.

[5] Cho L H, Yoon J, An G. The control of flowering time by environmental factors. Plant J, 2017, 90: 708–719.

[6] Song Y H, Shim J S, Kinmonth-Schultz H A, Imaizumi T. Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol, 2015, 66: 441–464.

[7] Andrés F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 2012, 13: 627–639.

[8] Casal J J, Qüesta J I. Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol, 2018, 217: 1029–1034.

[9] Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot, 2014, 114: 1445–1458.

[10] Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 1999, 11: 949–956.

[11] Sheldon C C, Rouse D T, Finnegan E J, Peacock W J, Dennis E S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA, 2000, 97: 3753–3758.

[12] Bastow R, Mylne J S, Lister C, Lippman Z, Martienssen R A, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 2004, 427: 164–167.

[13] Alexandre C M, Hennig L. FLC or not FLC: the other side of vernalization. J Exp Bot, 2008, 59: 1127–1135.

[14] Michaels S D, Himelblau E, Kim S Y, Schomburg F M, Amasino R M. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol, 2005, 137: 149–156.

[15] Sheldon C C, Jean Finnegan E, Dennis E S, James Peacock W. Quantitative effects of vernalization on FLC and SOC1 expression. Plant J, 2006, 45: 871–883.

[16] Bond D M, Dennis E S, Jean Finnegan E. Hypoxia: a novel function for VIN3. Plant Signal Behav, 2009, 4: 773–776.

[17] Searle I, He Y H, Turck F, Vincent C, Fornara F, Kröber S, Amasino R A, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev, 2006, 20: 898–912.

[18] 魏大勇. 甘蓝型油菜遗传结构分析和选择驯化研究. 西南大学博士学位论文, 重庆, 2015.
Wei D Y. Genetic Structure Analysis and Selection and Domestication of Brassica napus L. PhD Dissertation of Southwest University, Chongqing, China, 2015 (in Chinese with English abstract).

[19] Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, et al. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ, 2016, 39: 1228–1239.

[20] Huang L Y, Min Y, Schiessl S, Xiong X H, Jan H U, He X, Qian W, Guan C Y, Snowdon R J, Hua W, et al. Integrative analysis of GWAS and transcriptome to reveal novel loci regulation flowering time in semi-winter rapeseed. Plant Sci, 2021, 310: 110980.

[21] Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Große I, Schiessl S, Jung C, Emrani N. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Plant Cell Environ, 2018, 41: 1935–1947.

[22] Marc Jones D, Wells R, Pullen N, Trick M, Irwin J A, Morris R J. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. Plant J, 2018, 96: 103–118.

[23] Marc Jones D, Olson T S G, Pullen N, Wells R, Irwin J A, Morris R J. The oilseed rape developmental expression resource: a resource for the investigation of gene expression dynamics during the floral transition in oilseed rape. BMC Plant Biol, 2020, 20: 344.

[24] Childs K L, Davidson R M, Robin Buell C. Gene coexpression network analysis as a source of functional annotation for rice genes. PLoS One, 2011, 6: e22196.

[25] Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol, 2017, 585: 135–158.

[26] 谷思宇, 杨晓梅, 贺俊崎. CRISPR/Cas9基因编辑技术: 基因剪刀: 重写生命密码的工具: 2020年诺贝尔化学奖简介. 首都医科大学学报, 2020, 41: 10141018.

Gu S Y, Yang X M, He J Q. CRISPR/Cas9 gene editing technology: gene scissors: a tool for rewriting the code of life: an introduction to the 2020 Nobel Prize in Chemistry. J Capital Medical Univ, 2020, 41: 10141018 (in Chinese with English abstract)

[27] Wang L W, Sun S, Wu T T, Liu L P, Sun X G, Cai Y P, Li J C, Jia H C, Yuan S, Chen L, et al. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J, 2020, 18: 1869–1881.

[28] Min Y C, He S C, Wang X, Hu H, Wei S H, Ge A K, Jiang L X, Yang S Q, Guo Y, Liu Z J, et al. Transcription factors BnaC09.FUL and BnaC06.WIP2 antagonistically regulate flowering time under long-day conditions in Brassica napus. J Genet Genomics, 2025, 52: 650–665.

[29] 李东昊, 姜玲, 刘春林, 阮颖. 甘蓝型油菜BnaSDG8基因CRISPR/Cas9敲除载体的构建及功能探究. 湖南农业大学学报(自然科学版)2018, 44(4): 346–352.

Li D H, Jiang L, Liu C L, Ruan Y. Construction of CRISPR/Cas9 knockout vector BnaSDG8 and its genetic transformation in Brassica napus. J Hunan Agric Univ (Nat Sci), 2018, 44(4): 346–352 (in Chinese with English abstract).

[30] Xiang X R, Qiu P, Mei Z C, Yao M, Liu W, He D, Cao S, He X, Xiong X H, Liu Z S, et al. Genome-wide association study and transcriptome analysis reveal natural variation of key genes regulation flowering time in rapeseed. Mol Breed, 2024, 44: 40.

[31] Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884–i890.

[32] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357–360.

[33] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.

[34] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742.

[35] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.

[36] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498–2504.

[37] Liu H, Ding Y D, Zhou Y Q, Jin W Q, Xie K B, Chen L L. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant, 2017, 10: 530–532.

[38] 刘询, 张斌, 李浪, 刘春林, 阮颖. 甘蓝型油菜BnaLCR23基因CRISPR-Cas9表达载体的构建及遗传转化. 分子植物育种, 2017, 15: 30243029.
Liu X, Zhang B, Li L, Liu C L, Ruan Y. Construction and genetic transformation of BnaLCR23 gene CRISPR-Cas9 expression vector in Brassica napus L. Mol Plant Breed, 2017, 15: 30243029 (in Chinese with English abstract).

[39] 张哲, 殷艳, 刘芳, 王积军, 傅廷栋. 我国油菜多功能开发利用现状及发展对策. 中国油料作物学报, 2018, 40: 618623.
Zhang Z, Yin Y, Liu F, Wang J J, Fu T D. Current situation and development countermeasures of Chinese rapeseed multifunctional development and utilization. Chin J Oil Crop Sci, 2018, 40: 618–623 (in Chinese with English abstract).

[40] Geraldo N, Bäurle I, Kidou S I, Hu X Y, Dean C. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol, 2009, 150: 1611–1618.

[41] Helal M, Gill R A, Tang M Q, Yang L, Hu M, Yang L L, Xie M L, Zhao C J, Cheng X H, Zhang Y Y, et al. SNP- and haplotype-based GWAS of flowering-related traits in Brassica napus. Plants, 2021, 10: 2475.

[42] Xu Y, Zhang B B, Ma N, Liu X, Qin M F, Zhang Y, Wang K, Guo N, Zuo K F, Liu X, et al. Quantitative trait locus mapping and identification of candidate genes controlling flowering time in Brassica napus L. Front Plant Sci, 2021, 11: 626205.

[43] Tudor E H, Marc Jones D, He Z S, Bancroft I, Trick M, Wells R, Irwin J A, Dean C. QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol J, 2020, 18: 2466–2481.

[44] Hines P J. Tic TOC1 plant clock. Sci Signal, 2012, 5: ec108.

[45] Li X, Ma D B, Lu S X, Hu X Y, Huang R F, Liang T, Xu T D, Tobin E M, Liu H T. Blue light- and low temperature-regulated COR27 and COR28 play roles in the Arabidopsis circadian clock. Plant Cell, 2016, 28: 2755–2769.

[46] Qi P L, Zhou H R, Zhao Q Q, Feng C, Ning Y Q, Su Y N, Cai X W, Yuan D Y, Zhang Z C, Su X M, et al. Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis. Nucleic Acids Res, 2022, 50: 7380–7395.

[47] Yang M K, Lin W J, Xu Y R, Xie B Y, Yu B Y, Chen L, Huang W. Flowering-time regulation by the circadian clock: from Arabidopsis to crops. Crop J, 2024, 12: 17–27.

[48] Wang F, Han T W, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol, 2024, 7: 579.

[49] Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot, 2010, 61: 2247–2254.

[50] Liu Y W, Li X, Ma D B, Chen Z R, Wang J W, Liu H T. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering. EMBO Rep, 2018, 19: e45762.

[51] Shin Y H, Lee H M, Park Y D. CRISPR/Cas9-Mediated Editing of AGAMOUS-like Genes Results in a Late-Bolting Phenotype in Chinese Cabbage (Brassica rapa ssp. pekinensis). Int J Mol Sci, 2022, 23: 15009.

[52] Yu J W, Rubio V, Lee N Y, Bai S L, Lee S Y, Kim S S, Liu L J, Zhang Y Y, Irigoyen M L, Sullivan J A, et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell, 2008, 32: 617–630.

[53] Li Z C, Fu X, Wang Y Z, Liu R Y, He Y H. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants. Nat Genet, 2018, 50: 1254–1261.

[54] Lee J H, Yoo S J, Park S H, Hwang I, Lee J S, Ahn J H. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev2007, 21: 397402.

[1] WANG Qiong, ZOU Dan-Xia, CHEN Xing-Yun, ZHANG Wei, ZHANG Hong-Mei, LIU Xiao-Qing, JIA Qian-Ru, WEI Li-Bin, CUI Xiao-Yan, CHEN Xin, WANG Xue-Jun, CHEN Hua-Tao. Genome-wide association analysis and candidate genes prediction of flowering time and maturity date traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1558-1568.
[2] LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408.
[3] ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631.
[4] XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585.
[5] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[6] LI Jia-Xin, HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing. Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(1): 44-57.
[7] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[8] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[9] ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235.
[10] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[11] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[12] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[13] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[14] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[15] ZHANG Jin-Hui, XIAO Zi-Yi, LI Xu-Hua, ZHANG Ming, JIA Chun-Lan, PAN Zhen-Yuan, QIU Fa-Zhan. Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2 [J]. Acta Agronomica Sinica, 2024, 50(12): 3144-3154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!