Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Cloning and expression analysis of the HvLRR-RLK-510 gene encoding a leucine-rich repeat receptor-like kinase in barley

Yu Kai-Hang**,Zhou Hong-Bin**,Luo Liang-Zha,Wang Mei-Li,Jiang Rui-Mei,Dong-Chen Wen-Hua,Li Shi-Jin,Mao Xiao-Qiang,Chen Sheng-Wei*   

  1. College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2025-07-21 Revised:2025-10-30 Accepted:2025-10-30 Published:2025-11-13
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32360469).

Abstract:

Elucidating the function and regulatory mechanisms of LRR-RLK (leucine-rich repeat receptor-like kinase) genes is essential for understanding the developmental processes and stress responses in barley. In this study, eight barley varieties or lines, including Beiqing 7, the Ynbs mutant, and Morex, were used as experimental materials. A 2904 bp coding sequence (CDS) of the HvLRR-RLK-510 gene was successfully cloned. The CDS and corresponding amino acid sequences of HvLRR-RLK-510 showed over 99.80% and 99.70% similarity, respectively, across the eight genotypes. The encoded protein contains key conserved domains typical of LRR-RLKs, including leucine-rich repeat domains, transmembrane regions, and a kinase domain. Phylogenetic analysis grouped this protein into a subclass shared with LRR-RLKs from wheat, rice, and Arabidopsis. RT-PCR and quantitative real-time PCR analyses revealed that HvLRR-RLK-510 was differentially expressed in young spikes, leaf sheaths, leaves, roots, and stems of the above-mentioned eight materials at the jointing stage, exhibiting both organ specificity and genotype dependence. Notably, expression in young spikes was consistently higher and less affected by genotype. Subcellular localization experiments showed that the protein is localized to the plasma membrane and vacuolar membrane in Nicotiana benthamiana leaf cells. This study provides a valuable gene resource and theoretical foundation for further investigation into the functional roles and molecular mechanisms of HvLRR-RLK-510 in barley.

Key words: barley, LRR-RLK, gene clone, subcellular localization, expression characteristics

[1]  Chakraborty S, Nguyen B, Wasti S D, et al. Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules, 2019, 24: 3081.

[2] 马媛媛甘睿王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31: 331–339.

Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. J Plant Physiol Mol Biol, 2005, 31: 331–339 (in Chinese with English abstract).

[3] Morillo S A, Tax F E. Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol, 2006, 9: 460469.

[4] Kobe B, Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol, 1995, 5: 409–416.

[5] Liu P L, Du L, Huang Y, et al. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol, 2017, 17: 47.

[6] 林彦萍王义, 蒋世翠, 植物类受体蛋白激酶研究进展基因组学与应用生物学, 2015, 34: 429437.

Lin Y P, Wang Y, Jiang S C, et al. Advance in research of plant receptor-like protein kinases. Genomics Appl Biol, 2015, 34: 429437 (in Chinese with English abstract).

[7]  Rayapuram C, Jensen M K, Maiser F, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol, 2012,13: 135–147.

[8] Zhang X R. Leucine-rich repeat receptor-like kinases in plants. Plant Mol Biol Report, 1998, 16: 301–311.

[9] Shiu S H, Bleecker A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol, 2003, 132: 530–543.

[10] Soltabayeva A, Dauletova N, Serik S, et al. Receptor-like kinases (LRR-RLKs) in response of plants to biotic and abiotic stresses. Plants (Basel), 2022, 11: 2660.

[11] Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100: 635–644.

[12] Durbak A R, Tax F E. CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems. Genetics, 2011, 189: 177–194.

[13] Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 2008, 319: 294.

[14] Nimchuk Z L, Zhou Y, Tarr P T, et al. Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development, 2015, 142: 1043–1049.

[15] Moon S, Jung K H, Lee D E, et al. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells, 2006, 21: 147–152.

[16] Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131: 5649–5657.

[17] Wang Z Y, Seto H, Fujioka S, et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410: 380–383.

[18] Sakaguchi J, Itoh J I, Ito Y, et al. COE1, an LRR-RLK responsible for commissural vein pattern formation in rice: COE1 regulates commissural vein formation. Plant J, 2010, 63: 405–416.

[19] Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001, 98: 1076310768.

[20] Sakai K, Citerne S, Antelme S, et al. BdERECTA controls vasculature patterning and phloem-xylem organization in Brachypodium distachyon. BMC Plant Biol, 2021, 21: 196.

[21] Fischer I, Diévart A, Droc G, et al. Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol, 2016, 170: 15951610.

[22] Zhou F L, Guo Y, Qiu L J. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biol, 2016, 16: 58.

[23] Sun J, Li L, Wang P, Zhang S, et al. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18: 763.

[24] Shiu S H, Bleecker A B. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE, 2001, 2001: re22.

[25] Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451457.

[26] Shen L P, Liu Y Y, Zhang L L, et alA transcriptional atlas identifies key regulators and networks for the development of spike tissues in barley. Cell Rep, 2023, 42: 113441.

[27] Zhou H B, He J Y, Wang M Y, et al. Gene locus mapping and candidate gene screening for branched spike and its associated traits of the Ynbs mutant in barley. Agriculture, 2023, 13: 1934.

[28] Wang W B, He J Y, Chen S W, et al. Construction of a high-density genetic map and fine mapping of a candidate gene locus for a novel branched-spike mutant in barley. PLoS One, 2020, 15: e0227617.

[29] 王新天王卫斌陈升位. 裸大麦突变体Ynbs-1的分枝穗特性及其遗传分析. 麦类作物学报, 2019, 39: 574–580.

Wang X T, Wang W B, Chen S W, et al. Characteristics of branched-spike of hulless barley mutant-Ynbs-1 and its genetic analysis. J Triticeae Crops, 2019, 39: 574–580 (in Chinese with English abstract).

[30] 董陈文华, 周洪斌, 郎雨萌, . 大麦LRR型类受体蛋白激酶基因HvLRR-RLK510启动子的克隆与功能验证. 麦类作物学报, 网络首发[2025-05-29], https://link.cnki.net/urlid/61.1359.s.20250528.1530.010.

Dong-Chen W H, Zhou H B, Lang Y M, et al. Cloning and functional validation of the promoter of the LRR-Type receptor-like protein kinase gene HvLRR-RLK510 in barley. J Triticeae Crops, Published Online [2025-05-29], https://link.cnki.net/urlid/61.1359.s.20250528.1530.010 (in Chinese with English abstract).

[31] 王梦玥, 罗振蒙詹开旺, 大麦核仁蛋白基因HvNOP58的克隆和表达分析麦类作物学报, 2024, 44: 1087–1095.

Wang M Y, Luo Z M, Zhan K W, et al. Cloning and expression characteristics of a nucleolar protein gene HvNOP58 in barley. J Triticeae Crops, 2024, 44: 10871095 (in Chinese with English abstract).

[32] Roman A O, Jimenez-Sandoval P, Augustin S, et al. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun, 2022, 13: 876.

[33] Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev, 2000, 14: 108117.

[34] Chen D, Guo H, Chen S, et al. Receptor-like kinase HAESA-like 1 positively regulates seed longevity in Arabidopsis. Planta, 2022, 256: 21.

[35] 孙泽丹, 曾世荣, 孙小孟, . 玉米LRR-RLK基因家族鉴定和SIF亚家族表达模式分析. 玉米科学, 2024, 32(4): 1930.

Sun Z D, Zeng S R, Sun X M, et al. Genome-wide identification of the LRR-RLK gene family and SIF subfamily gene expression profiling in maize. J Maize Sci, 2024, 32(4): 1930 (in Chinese with English abstract).

[36] 阿依江·哈拜克, 杨敏, 韩玉珍. 拟南芥LRR-RLKs亚家族蛋白RLK6亚细胞定位及RLK6组织表达. 西北植物学报, 2014, 34: 16.

A-Yi-Jiang H B K, Yang M, Han Y Z. Subcellular localization of RLK6, a protein of LRR-RLK subfamily and tissue expression pattern of the RLK6 in Arabidopsis. Acta Bot Boreali-Occident Sin, 2014, 34: 16 (in Chinese with English abstract).

[37] Baudino S, Hansen S, Brettschneider R, et al. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 2001, 213: 1–10.

[38] Parrott D L, Huang L, Fischer A M. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defensePlant Physiol Biochem, 2016, 100: 130140.

[39] 刘媛媛, 杨冬杰, 左东云, . 棉花GhD6PKL2的克隆及功能验证. 生物技术通报, 2021, 37(8): 111120.

Liu Y Y, Yang D J, Zuo D Y. et al. Cloning and functional verification of GhD6PKL2 from Gossypium hirsutum. Biotechnol Bull, 2021, 37(8): 111120 (in Chinese with English abstract).

[40] Mou SL, Meng Q Q, Gao F, et al. A cysteine-rich receptor-like protein kinase CaCKR5 modulates immune response against Ralstonia solanacearum infection in pepper. BMC Plant Biol, 2021, 21: 382.

[41] 梁大曲, 石长双, 涂晶晶, . 马尾松PmSWEET基因的克隆、亚细胞定位及表达分析. 植物生理学报, 2022, 58: 447457.

Liang D Q, Shi C S, Tu J J, et al. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana. Plant Physiol J, 2022, 58: 447457 (in Chinese with English abstract).

[42] 陆优社, 时明星, 王小虎, . 水稻OsABCC10基因的克隆及其功能分析. 分子植物育种, 2020, 18: 27762784.

Lu Y S, Shi M X, Wang X H, et al. Cloning and functional analysis of OsABCC10 gene in rice. Mol Plant Breed, 2020, 18: 27762784 (in Chinese with English abstract).

[43] 杨官显, 许海峰, 张静, . 苹果糖转运蛋白基因MdSWEET17的功能鉴定. 植物生理学报, 2018, 54: 17371745.

Yang G X, Xu H F, Zhang J, et al. Functional identification of a sugar transporter gene MdSWEET17 in apple, Plant Physiol J, 2018, 54: 17371745 (in Chinese with English abstract).

[44] 卢梦琪, 谭晓风, 周俊琴, . 油茶CoALMT9基因的克隆与表达分析. 植物生理学报, 2020, 56: 837846.

Lu M Q, Tan X F, Zhou J Q, et al. Cloning and expressional analysis of CoALMT9 gene in Camellia oleifera Abel. Plant Physiol J, 2020, 56: 837846 (in Chinese with English abstract).

[45] 徐亚, 滕梦鑫, 何岳东, . 香蕉NHX基因家族的鉴定及表达分析. 植物生理学报, 2021, 57: 681691.

Xu Y, Teng M X, He Y D, et al. Identification and expression analysis of NHX genes family in banana. Plant Physiol J, 2021, 57: 681691 (in Chinese with English abstract).

[46] 杨艳会, 杨恒, 张重义, . 地黄RgMATE6转运蛋白基因的克隆、亚细胞定位与表达分析. 中草药, 2021, 52: 17281734.

Yang Y H, Yang H, Zhang Z Y, et al. Clone, subcellular localization and expression analysis of RgMATE6 transporter protein gene from Rehmannia glutinosa. Chin Trad Herbal Drugs, 2021, 52: 17281734 (in Chinese with English abstract).

[47] Chen S, Chen J, Wang X C. Existence and characteristics of tonoplast-bound protein kinase in the tip cell of maize root. Acta Bot Sin, 2002, 44: 661666.

[48] Ouelhadj A, Kaminski M, Mittag M, et al. Receptor-like protein kinase HvLysMR1 of barley (Hordeum vulgare L.) is induced during leaf senescence and heavy metal stress. J Experimental Botany, 2007, 58: 13811396.

[49] Ciesla A, Mituła1 F, Misztal L, et al. A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Plant Sci, 2016, 7: 1550.

[1] HE Peng-Xu, YAO Li-Rong, CHEN Yuan-Ling, YAN Yan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun. Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress [J]. Acta Agronomica Sinica, 2025, 51(9): 2412-2432.
[2] WEN Xuan, ZHONG Xiu-Li, WANG Shang-Wen, JIN Tao, PENG Jun, LIU En-Ke. Screening of low nitrogen tolerant germplasm in seedling highland barley based on tolerance index and comprehensive evaluation of different nitrogen efficiency types [J]. Acta Agronomica Sinica, 2025, 51(7): 1949-1958.
[3] LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700.
[4] LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214.
[5] CHENG Hong-Na, QIN Dan-Dan, XU Fu-Chao, XU Qing, PENG Yan-Chun, SUN Long-Qing, XU Le, GUO Ying, YANG Xin-Quan, XU De-Ze, DONG Jing. Comparative analysis of metabolomics of colored hulless barley and colored wheat grains [J]. Acta Agronomica Sinica, 2025, 51(4): 932-942.
[6] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[7] WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887.
[8] MA Min-Hu, CHANG Hua-Yu, CHEN Zhao-Yan, REN Zeng, LIU Ting-Hui, XING Guo-Fang, GUO Gang-Gang. Identification and genome-wide association study of specialized seedling grass barley cultivars [J]. Acta Agronomica Sinica, 2025, 51(1): 91-102.
[9] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[10] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[11] SUN Man, AN Chao-Dan, GAO Guang-Qi, GUO Jie, YANG Ping, JIANG Cong-Cong. Genetic dissection of the albino hull mutations in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2024, 50(12): 3046-3054.
[12] LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492.
[13] ZHAN Xiao-Xiao, FENG Ju-Ling, ZHANG Zhen-Huan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun, YAO Li-Rong. Salt tolerance analysis of HvMBF1c in barley [J]. Acta Agronomica Sinica, 2024, 50(10): 2503-2514.
[14] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[15] TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!