Yu Kai-Hang**,Zhou Hong-Bin**,Luo Liang-Zha,Wang Mei-Li,Jiang Rui-Mei,Dong-Chen Wen-Hua,Li Shi-Jin,Mao Xiao-Qiang,Chen Sheng-Wei*
| [1] Chakraborty S, Nguyen B, Wasti S D, et al. Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules, 2019, 24: 3081. [2] 马媛媛, 甘睿, 王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31: 331–339. Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. J Plant Physiol Mol Biol, 2005, 31: 331–339 (in Chinese with English abstract). [3] Morillo S A, Tax F E. Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol, 2006, 9: 460–469. [4] Kobe B, Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol, 1995, 5: 409–416. [5] Liu P L, Du L, Huang Y, et al. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol, 2017, 17: 47. [6] 林彦萍, 王义, 蒋世翠, 等. 植物类受体蛋白激酶研究进展. 基因组学与应用生物学, 2015, 34: 429–437. Lin Y P, Wang Y, Jiang S C, et al. Advance in research of plant receptor-like protein kinases. Genomics Appl Biol, 2015, 34: 429–437 (in Chinese with English abstract). [7] Rayapuram C, Jensen M K, Maiser F, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol, 2012,13: 135–147. [8] Zhang X R. Leucine-rich repeat receptor-like kinases in plants. Plant Mol Biol Report, 1998, 16: 301–311. [9] Shiu S H, Bleecker A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol, 2003, 132: 530–543. [10] Soltabayeva A, Dauletova N, Serik S, et al. Receptor-like kinases (LRR-RLKs) in response of plants to biotic and abiotic stresses. Plants (Basel), 2022, 11: 2660. [11] Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100: 635–644. [12] Durbak A R, Tax F E. CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems. Genetics, 2011, 189: 177–194. [13] Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 2008, 319: 294. [14] Nimchuk Z L, Zhou Y, Tarr P T, et al. Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development, 2015, 142: 1043–1049. [15] Moon S, Jung K H, Lee D E, et al. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells, 2006, 21: 147–152. [16] Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131: 5649–5657. [17] Wang Z Y, Seto H, Fujioka S, et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410: 380–383. [18] Sakaguchi J, Itoh J I, Ito Y, et al. COE1, an LRR-RLK responsible for commissural vein pattern formation in rice: COE1 regulates commissural vein formation. Plant J, 2010, 63: 405–416. [19] Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001, 98: 10763–10768. [20] Sakai K, Citerne S, Antelme S, et al. BdERECTA controls vasculature patterning and phloem-xylem organization in Brachypodium distachyon. BMC Plant Biol, 2021, 21: 196. [21] Fischer I, Diévart A, Droc G, et al. Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol, 2016, 170: 1595–1610. [22] Zhou F L, Guo Y, Qiu L J. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biol, 2016, 16: 58. [23] Sun J, Li L, Wang P, Zhang S, et al. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18: 763. [24] Shiu S H, Bleecker A B. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE, 2001, 2001: re22. [25] Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451–457. [26] Shen L P, Liu Y Y, Zhang L L, et al. A transcriptional atlas identifies key regulators and networks for the development of spike tissues in barley. Cell Rep, 2023, 42: 113441. [27] Zhou H B, He J Y, Wang M Y, et al. Gene locus mapping and candidate gene screening for branched spike and its associated traits of the Ynbs mutant in barley. Agriculture, 2023, 13: 1934. [28] Wang W B, He J Y, Chen S W, et al. Construction of a high-density genetic map and fine mapping of a candidate gene locus for a novel branched-spike mutant in barley. PLoS One, 2020, 15: e0227617. [29] 王新天, 王卫斌, 陈升位, 等. 裸大麦突变体Ynbs-1的分枝穗特性及其遗传分析. 麦类作物学报, 2019, 39: 574–580. Wang X T, Wang W B, Chen S W, et al. Characteristics of branched-spike of hulless barley mutant-Ynbs-1 and its genetic analysis. J Triticeae Crops, 2019, 39: 574–580 (in Chinese with English abstract). [30] 董陈文华, 周洪斌, 郎雨萌, 等. 大麦LRR型类受体蛋白激酶基因HvLRR-RLK510启动子的克隆与功能验证. 麦类作物学报, 网络首发[2025-05-29], https://link.cnki.net/urlid/61.1359.s.20250528.1530.010. Dong-Chen W H, Zhou H B, Lang Y M, et al. Cloning and functional validation of the promoter of the LRR-Type receptor-like protein kinase gene HvLRR-RLK510 in barley. J Triticeae Crops, Published Online [2025-05-29], https://link.cnki.net/urlid/61.1359.s.20250528.1530.010 (in Chinese with English abstract). [31] 王梦玥, 罗振蒙, 詹开旺, 等. 大麦核仁蛋白基因HvNOP58的克隆和表达分析. 麦类作物学报, 2024, 44: 1087–1095. Wang M Y, Luo Z M, Zhan K W, et al. Cloning and expression characteristics of a nucleolar protein gene HvNOP58 in barley. J Triticeae Crops, 2024, 44: 1087–1095 (in Chinese with English abstract). [32] Roman A O, Jimenez-Sandoval P, Augustin S, et al. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun, 2022, 13: 876. [33] Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev, 2000, 14: 108–117. [34] Chen D, Guo H, Chen S, et al. Receptor-like kinase HAESA-like 1 positively regulates seed longevity in Arabidopsis. Planta, 2022, 256: 21. [35] 孙泽丹, 曾世荣, 孙小孟, 等. 玉米LRR-RLK基因家族鉴定和SIF亚家族表达模式分析. 玉米科学, 2024, 32(4): 19–30. Sun Z D, Zeng S R, Sun X M, et al. Genome-wide identification of the LRR-RLK gene family and SIF subfamily gene expression profiling in maize. J Maize Sci, 2024, 32(4): 19–30 (in Chinese with English abstract). [36] 阿依江·哈拜克, 杨敏, 韩玉珍. 拟南芥LRR-RLKs亚家族蛋白RLK6的亚细胞定位及RLK6的组织表达. 西北植物学报, 2014, 34: 1–6. A-Yi-Jiang H B K, Yang M, Han Y Z. Subcellular localization of RLK6, a protein of LRR-RLK subfamily and tissue expression pattern of the RLK6 in Arabidopsis. Acta Bot Boreali-Occident Sin, 2014, 34: 1–6 (in Chinese with English abstract). [37] Baudino S, Hansen S, Brettschneider R, et al. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 2001, 213: 1–10. [38] Parrott D L, Huang L, Fischer A M. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defense. Plant Physiol Biochem, 2016, 100: 130–140. [39] 刘媛媛, 杨冬杰, 左东云, 等. 棉花GhD6PKL2的克隆及功能验证. 生物技术通报, 2021, 37(8): 111–120. Liu Y Y, Yang D J, Zuo D Y. et al. Cloning and functional verification of GhD6PKL2 from Gossypium hirsutum. Biotechnol Bull, 2021, 37(8): 111–120 (in Chinese with English abstract). [40] Mou SL, Meng Q Q, Gao F, et al. A cysteine-rich receptor-like protein kinase CaCKR5 modulates immune response against Ralstonia solanacearum infection in pepper. BMC Plant Biol, 2021, 21: 382. [41] 梁大曲, 石长双, 涂晶晶, 等. 马尾松PmSWEET基因的克隆、亚细胞定位及表达分析. 植物生理学报, 2022, 58: 447–457. Liang D Q, Shi C S, Tu J J, et al. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana. Plant Physiol J, 2022, 58: 447–457 (in Chinese with English abstract). [42] 陆优社, 时明星, 王小虎, 等. 水稻OsABCC10基因的克隆及其功能分析. 分子植物育种, 2020, 18: 2776–2784. Lu Y S, Shi M X, Wang X H, et al. Cloning and functional analysis of OsABCC10 gene in rice. Mol Plant Breed, 2020, 18: 2776–2784 (in Chinese with English abstract). [43] 杨官显, 许海峰, 张静, 等. 苹果糖转运蛋白基因MdSWEET17的功能鉴定. 植物生理学报, 2018, 54: 1737–1745. Yang G X, Xu H F, Zhang J, et al. Functional identification of a sugar transporter gene MdSWEET17 in apple, Plant Physiol J, 2018, 54: 1737–1745 (in Chinese with English abstract). [44] 卢梦琪, 谭晓风, 周俊琴, 等. 油茶CoALMT9基因的克隆与表达分析. 植物生理学报, 2020, 56: 837–846. Lu M Q, Tan X F, Zhou J Q, et al. Cloning and expressional analysis of CoALMT9 gene in Camellia oleifera Abel. Plant Physiol J, 2020, 56: 837–846 (in Chinese with English abstract). [45] 徐亚, 滕梦鑫, 何岳东, 等. 香蕉NHX基因家族的鉴定及表达分析. 植物生理学报, 2021, 57: 681–691. Xu Y, Teng M X, He Y D, et al. Identification and expression analysis of NHX genes family in banana. Plant Physiol J, 2021, 57: 681–691 (in Chinese with English abstract). [46] 杨艳会, 杨恒, 张重义, 等. 地黄RgMATE6转运蛋白基因的克隆、亚细胞定位与表达分析. 中草药, 2021, 52: 1728–1734. Yang Y H, Yang H, Zhang Z Y, et al. Clone, subcellular localization and expression analysis of RgMATE6 transporter protein gene from Rehmannia glutinosa. Chin Trad Herbal Drugs, 2021, 52: 1728–1734 (in Chinese with English abstract). [47] Chen S, Chen J, Wang X C. Existence and characteristics of tonoplast-bound protein kinase in the tip cell of maize root. Acta Bot Sin, 2002, 44: 661–666. [48] Ouelhadj A, Kaminski M, Mittag M, et al. Receptor-like protein kinase HvLysMR1 of barley (Hordeum vulgare L.) is induced during leaf senescence and heavy metal stress. J Experimental Botany, 2007, 58: 1381–1396. [49] Ciesla A, Mituła1 F, Misztal L, et al. A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Plant Sci, 2016, 7: 1550. |
| [1] | HE Peng-Xu, YAO Li-Rong, CHEN Yuan-Ling, YAN Yan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun. Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress [J]. Acta Agronomica Sinica, 2025, 51(9): 2412-2432. |
| [2] | WEN Xuan, ZHONG Xiu-Li, WANG Shang-Wen, JIN Tao, PENG Jun, LIU En-Ke. Screening of low nitrogen tolerant germplasm in seedling highland barley based on tolerance index and comprehensive evaluation of different nitrogen efficiency types [J]. Acta Agronomica Sinica, 2025, 51(7): 1949-1958. |
| [3] | LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700. |
| [4] | LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214. |
| [5] | CHENG Hong-Na, QIN Dan-Dan, XU Fu-Chao, XU Qing, PENG Yan-Chun, SUN Long-Qing, XU Le, GUO Ying, YANG Xin-Quan, XU De-Ze, DONG Jing. Comparative analysis of metabolomics of colored hulless barley and colored wheat grains [J]. Acta Agronomica Sinica, 2025, 51(4): 932-942. |
| [6] | PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913. |
| [7] | WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887. |
| [8] | MA Min-Hu, CHANG Hua-Yu, CHEN Zhao-Yan, REN Zeng, LIU Ting-Hui, XING Guo-Fang, GUO Gang-Gang. Identification and genome-wide association study of specialized seedling grass barley cultivars [J]. Acta Agronomica Sinica, 2025, 51(1): 91-102. |
| [9] | GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988. |
| [10] | ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589. |
| [11] | SUN Man, AN Chao-Dan, GAO Guang-Qi, GUO Jie, YANG Ping, JIANG Cong-Cong. Genetic dissection of the albino hull mutations in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2024, 50(12): 3046-3054. |
| [12] | LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492. |
| [13] | ZHAN Xiao-Xiao, FENG Ju-Ling, ZHANG Zhen-Huan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun, YAO Li-Rong. Salt tolerance analysis of HvMBF1c in barley [J]. Acta Agronomica Sinica, 2024, 50(10): 2503-2514. |
| [14] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
| [15] | TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732. |
|
||