Zhang Qing1,Yang Yu2,Guo Qian2,Yue Pei-Yao2,Yin Cong-Cong1,Niu Jing-Ping3,Zhao Jin-Zhong1,Du Wei-Jun2,Yue Ai-Qin2,*
| [1] Qi D H, Lee C F. Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. J Taiwan Inst Chem E, 2014, 45: 504–507. [2] Shi D, Hang J Y, Neufeld J, et al. Effects of genotype, environment and their interaction on protein and amino acid contents in soybeans. Plant Sci, 2023, 337: 111891. [3] Li S Z, Xu L, Li Y T, et al. Advances in salinity tolerance of soybean: molecular mechanism and breeding strategy. Food Energy Secur, 2025, 14: e70073. [4] 毛韩成. 耐盐大豆根际微生物群落特征及其耐盐效应. 南京农业大学硕士学位论文, 江苏南京, 2023. Mao H C. Characteristics of Rhizosphere Microbial Community in Salt Tolerant Soybean and Its Salt Tolerance Effect. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2023 (in Chinese with English abstract). [5] Yu Z P, Duan X B, Luo L, et al. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117–1130. [6] Quan R D, Lin H X, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19: 1415–1431. [7] Park H J, Kim W Y, Yun D J. A role for GIGANTEA: Keeping the balance between flowering and salinity stress tolerance. Plant Signal Behav, 2013, 8: e24820. [8] Zhao S S, Zhang Q K, Liu M Y, et al. Regulation of plant responses to salt stress. Int J Mol Sci, 2021, 22: 4609. [9] Park H J, Kim W Y, Yun D J. A new insight of salt stress signaling in plant. Mol Cells, 2016, 39: 447–459. [10] van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 2020, 71: 403–433. [11] Wang K K, Zhu J, Xu X W, et al. Quantitative monitoring of salt stress in rice with solar-induced chlorophyll fluorescence. Eur J Agron, 2023, 150: 126954. [12] Ismail A, Takeda S, Nick P. Life and death under salt stress: same players, different timing? J Exp Bot, 2014, 65: 2963–2979. [13] Yamada N, Takahashi H, Kitou K, et al. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of Glycine betaine. Plant Physiol Biochem, 2015, 96: 217–221. [14] Ren X L, Qi G N, Feng H Q, et al. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J, 2013, 74: 258–266. [15] Nieves-Cordones M, Alemán F, Martínez V, et al. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol, 2014, 171: 688–695. [16] Xu J, Li H D, Chen L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347–1360. [17] Sánchez-Barrena M J, Chaves-Sanjuan A, Raddatz N, et al. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23. Plant Physiol, 2020, 182: 2143–2153. [18] Echeverría E. Vesicle-mediated solute transport between the vacuole and the plasma membrane. Plant Physiol, 2000, 123: 1217–1226. [19] Van Damme D, Inzé D, Russinova E. Vesicle trafficking during somatic cytokinesis. Plant Physiol, 2008, 147: 1544–1552. [20] Ebine K, Miyakawa N, Fujimoto M, et al. Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases, 2012, 3: 23–27. [21] Ebine K, Fujimoto M, Okatani Y, et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol, 2011, 13: 853–859. [22] Ito E, Ebine K, Choi S W, et al. Integration of two RAB5 groups during endosomal transport in plants. eLife, 2018, 7: e34064. [23] Sunada M, Goh T, Ueda T, et al. Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana. J Plant Res, 2016, 129: 93–102. [24] Ueda T, Yamaguchi M, Uchimiya H, et al. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J, 2001, 20: 4730–4741. [25] Hoepflinger M C, Geretschlaeger A, Sommer A, et al. Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae. J Exp Bot, 2013, 64: 5553–5568. [26] Bottanelli F, Gershlick D C, Denecke J. Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic, 2012, 13: 338–354. [27] Ito E, Uemura T. RAB GTPases and SNAREs at the trans-Golgi network in plants. J Plant Res, 2022, 135: 389–403.
[28] 田再民. 马铃薯小G蛋白基因StRab5b的克隆及其调控晚疫病抗性的功能研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2020. [29] Hong Z P, Li Y, Zhao Y, et al. Heterologous expression of Arabidopsis AtARA6 in soybean enhances salt tolerance. Front Genet, 2022, 13: 849357. [30] Huang Y P, Hou P Y, Chen I H, et al. Dissecting the role of a plant-specific Rab5 small GTPase NbRabF1 in Bamboo mosaic virus infection. J Exp Bot, 2020, 71: 6932–6944. [31] Kesawat M S, Satheesh N, Kherawat B S, et al. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules-current perspectives and future directions. Plants, 2023, 12: 864. [32] Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12: 1667–1678. [33] Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21: 5208. [34] Shen Y, Shen L K, Shen Z X, et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ, 2015, 38: 2766–2779. [35] Liu G Y, Zeng Y L, Li B Y, et al. SOS2 phosphorylates FREE1 to regulate multi-vesicular body trafficking and vacuolar dynamics under salt stress. Plant Cell, 37, 3, koaf012. |
| [1] | WANG Ke-Jing, LI Xiang-Hua. Endangerment assessment of the perennial species G. tabacina and G. tomentella of the genus Glycine Willd. in China [J]. Acta Agronomica Sinica, 2025, 51(8): 2009-2019. |
| [2] | MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008. |
| [3] | HE Hong-Li, ZHANG Yu-Han, YANG Jing, CHENG Yun-Qing, ZHAO Yang, LI Xing-Nuo, SI Hong-Liang, ZHANG Xing-Zheng, YANG Xiang-Dong. Creation and physiological analysis of an e1-as gene mutant in soybean [J]. Acta Agronomica Sinica, 2025, 51(8): 2228-2239. |
| [4] | HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756. |
| [5] | WANG Qiong, ZOU Dan-Xia, CHEN Xing-Yun, ZHANG Wei, ZHANG Hong-Mei, LIU Xiao-Qing, JIA Qian-Ru, WEI Li-Bin, CUI Xiao-Yan, CHEN Xin, WANG Xue-Jun, CHEN Hua-Tao. Genome-wide association analysis and candidate genes prediction of flowering time and maturity date traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1558-1568. |
| [6] | YIN Cong-Cong, LI Rui-Qi, YUE Pei-Yao, LI Chen, NIU Jing-Ping, ZHAO Jin-Zhong, DU Wei-Jun, YUE Ai-Qin. Establishment and application of a visual detection method for soybean mosaic virus SC15 based on closed dumbbell mediated isothermal amplification [J]. Acta Agronomica Sinica, 2025, 51(5): 1248-1260. |
| [7] | LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101. |
| [8] | PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913. |
| [9] | HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666. |
| [10] | LIN Yang, SHI Xiao-Lei, CHEN Qiang, LIU Bing-Qiang, YANG Qing, YU Hui-Juan, YAN Long, WU Xiao-Xia, YANG Chun-Yan. QTL mapping of soybean protein, oil, and fatty acid components [J]. Acta Agronomica Sinica, 2025, 51(11): 2899-2910. |
| [11] | ZHANG Shun-Jie, WU Wei-Tai, RAN Xi-Yue, ZHAO Zi-Han, HAN Yong-Hui, WU Zheng-Dan, ZHANG Kai. Functional analysis of the sweetpotato β-Amylase IbBAM48829 [J]. Acta Agronomica Sinica, 2025, 51(11): 3096-3104. |
| [12] | LI Wei, ZHU Yu-Peng, SUN Bin-Cheng, WEN You-Xiang, WU Zong-Sheng, XU Yi-Fan, SONG Wen-Wen, XU Cai-Long, WU Cun-Xiang. Transgenic soybean combined with no-tillage flat planting promotes the simplification of soybean production in Northeast China [J]. Acta Agronomica Sinica, 2025, 51(10): 2738-2749. |
| [13] | CHEN Min, JIA Rong, ZHANG Jin-Chuan, ZHANG Chen-Yu, CHU Jun-Cong, YAO Wei, GE Jun-Yong, WANG Xing-Yu, YANG Ya-Dong, ZENG Zhao-Hai, ZANG Hua-Dong. Yield advantages and nitrogen utilization characteristics of oat and legume strip intercropping in semi-arid zones [J]. Acta Agronomica Sinica, 2025, 51(10): 2727-2737. |
| [14] | QIAN Yu-Ping, SU Bing-Bing, GAO Ji-Xing, RUAN Fen-Hua, LI Ya-Wei, MAO Lin-Chun. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region [J]. Acta Agronomica Sinica, 2025, 51(1): 273-284. |
| [15] | DING Shu-Qi, CHENG Tong, WANG Bi-Kun, YU De-Bin, RAO De-Min, MENG Fan-Gang, ZHAO Yin-Kai, WANG Xiao-Hui, ZHANG Wei. Effects of planting density on photosynthetic production and yield formation of soybean varieties from different eras [J]. Acta Agronomica Sinica, 2025, 51(1): 161-173. |
|
||