Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (01): 30-33.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Creation of Novel Wheat-rye 1BS/1RS Translocation Lines and Characterization by Molecular Cytogenetics

WANG Jing; WANG Xian-Ping; JI Jun; WANG Zhi-Guo1; AN Diao-Guo; LI Jun-Ming and ZHANG Xiang-Qi   

  1. 2Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101
  • Received:2005-02-25 Revised:1900-01-01 Online:2006-01-12 Published:2006-01-12
  • Contact: ZHANG Xiang-Qi

Abstract:

The wheat-rye 1RS/1BL translocation has made a great contribution to the wheat production in the world since the Green Revolution. The 1RS/1BL translocations, for the existence of the short arm of rye(Secale cereale L.) chromosome 1R, often have many good traits such as high yield potential, multi-resistance to diseases and good adaptation to acid soil. Many studies also illustrated that 1RS carries a lot of rust resistance genes (Sr31, Lr26, Yr9) and powdery mildew resistance gene (Pm8). As a result, the short arm of 1R is frequently used as alien chromatin in wheat (Triticum aestivum L.) improvement.
But one major concern about this translocation recently is its single origin, with the consequence being loss of resistances to new races of stripe rust and powdery mildew. The other concern is that most of wheat cultivars carrying this chromosome arm were shown a defective grain quality, in particular, sticky dough and a reduction in dough strength. The reduction in dough strength was thought to be due to the presence of monomeric secalins from rye (Sec-1) and the substitution of glutenins and gliadins (Glu-3 and Gli-1).
In order to develop new potentially usable disease resistant alien germplasm and improve the quality of 1RS/1BL translocations, cross was carried out between the Triticum aestivum L.cv.“Xiaoyan 6” and Secale cereale L.cv.“German White”. “German White” is a winter rye cultivar which is immune from stripe rust and powdery mildew. “Xiaoyan 6” is an elite winter wheat cultivar derived from the cross common wheat × Thinopyrum ponticum (2n=70). It possesses the characteristics of good processing quality, high yield potential, earliness, good stress tolerance and wide adaptation.
Wheat-rye hybrids between “Xiaoyan 6” and “German White” were obtained in 1994. The F1 were treated with colchicines. The F2 and the subsequent generations were self-crossed and planted in the field. Each individual plant was selected with the qualities of seed set, wheat-like plant type and good resistance to rust and powdery mildew. A set of wheat-rye germplasm with resistances to rust and powdery mildew were bred. In order to identify genetic basis of these resistant lines, sequential C-banding–GISH (genomic in situ hybridization) was employed to analyze the chromosome compositions in somatic cells. As a result, two 1RS/1BL homozygous translocation lines BC152-1-1 and BC01-89-1 were selected. One of them, BC152-1-1 had a chromosome number of 2n=42 in somatic cell and its chromosome composition were 40 normal wheat chromosomes and one pair of 1RS/1BL Robertsonian translocation chromosomes (PlateⅠ-A,B). The other one, BC01-89-1 (2n=43) was a 1RS/1BL Robertsonian translocation line added one 3R chromosome with both terminal deletions (PlateⅠ-C,D). In addition, the high-molecular-weight glutenin subunits (HMW-GS) in endosperm and major quality characteristics of “Xiaoyan 6”, BC152-1-1 and BC01-89-1 were analyzed. The results showed that BC152-1-1 and BC01-89-1 carried HMW-GS 14+15 derived from “Xiaoyan 6” (Fig.1), and their grain protein content, wet gluten content and SDS sedimentation value were greatly improved.

Key words: Triticum aestivum, Secale cereale, 1RS/1BL translocation line, Sequent C-banding-GISH, HMW-GS

CLC Number: 

  • S512
[1] WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937.
[2] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[3] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[4] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[5] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[6] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[7] LIU Pei-Xun,MA Xiao-Fei,WAN Hong-Shen,ZHENG Jian-Min,LUO Jiang-Tao,PU Zong-Jun. Comparative proteomic analysis of two wheat genotypes with contrasting grain softness index [J]. Acta Agronomica Sinica, 2020, 46(8): 1275-1282.
[8] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
[9] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[10] HAO Zhi-Ming,GENG Miao-Miao,WEN Shu-Min,YAN Gui-Jun,WANG Rui-Hui,LIU Gui-Ru. Development and validation of markers linked to genes resistant to Sitodiplosis mosellana in wheat [J]. Acta Agronomica Sinica, 2020, 46(02): 179-193.
[11] HU Wen-Jing,ZHANG Yong,LU Cheng-Bin,WANG Feng-Ju,LIU Jin-Dong,JIANG Zheng-Ning,WANG Jin-Ping,ZHU Zhan-Wang,XU Xiao-Ting,HAO Yuan-Feng,HE Zhong-Hu,GAO De-Rong. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16 [J]. Acta Agronomica Sinica, 2020, 46(02): 157-165.
[12] ZHAO Jia-Jia,MA Xiao-Fei,ZHENG Xing-Wei,HAO Jian-Yu,QIAO Ling,GE Chuan,WANG Ai-Ai,ZHANG Shu-Wei,ZHANG Xiao-Jun,JI Hu-Tai,ZHENG Jun. Effects of HMW-GS on wheat quality under different water conditions [J]. Acta Agronomica Sinica, 2019, 45(11): 1682-1690.
[13] Yu-Ling LI,Zheng-Ning JIANG,Wen-Jing HU,Dong-Sheng LI,Jing-Ye CHENG,Xin YI,Xiao-Ming CHENG,Rong-Lin WU,Shun-He CHENG. Mapping QTLs against Leaf Rust in CIMMYT Wheat C615 [J]. Acta Agronomica Sinica, 2018, 44(6): 836-843.
[14] Lin-Sheng WANG,Ya-Li ZHANG,Guang-Hui NAN. Molecular and Cytogenetic Identification of Triticum aestivum-Leymus racemosus Translocation Line T5AS-7LrL·7LrS [J]. Acta Agronomica Sinica, 2018, 44(10): 1442-1447.
[15] De-Hui ZHAO, Yong Zhang, De-Sen WANG, Ling HUANG, Xin-Min CHEN, Yong-Gui XIAO, Jun YAN, Yan ZHANG, Zhong-Hu HE. Pan Bread and Steamed Bread Qualities of Novel-Released Cultivars in Northern Winter Wheat Region of China [J]. Acta Agronomica Sinica, 2018, 44(05): 697-705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .