Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (02): 210-216.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Segregation Analysis of Quantitative Traits in Backcross Inbred Line Population

HE Xiao-Hong and GAI Jun-Yi   

  1. Soybean Research Institute/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University, Nanjing 210095,Jiangsu, China
  • Received:2005-01-25 Revised:1900-01-01 Online:2006-02-12 Published:2006-02-12
  • Contact: GAI Jun-Yi

Abstract:

A great number of genetic studies of quantitative traits, especially of QTL marker analysis, indicated that there existed both major genes and minor genes in a quantitative trait genetic system, not necessary all being minor genes even with equal effects. Gai et al. (2003) indicated for a QTL system, major gene plus minor gene model was the general model, while pure major gene model, or pure minor gene model was only the specific case of the general model. Based on it, they established the procedures of segregation analysis of quantitative trait to detect the genetic system. Among the genetic materials used, the permanent population, such as RILs is preferred in replication tests for precisely detecting QTLs. In the present paper, the segregation analysis was extended to backcross inbred line population (BIL). The procedures were as follows: At first, mixture distribution functions were established for the following genetic models: non-genetic, polygene, one major gene, two major genes, three major genes, one major gene plus polygene, two major genes plus polygene and three major genes plus polygene (Table 1). Then, the maximum likelihood method and ECM algorithm were used to estimate the parameters of component distributions. Furthermore, the best optimal genetic model was chosen among the possible genetic models through maximum entropy or Akaike’s information criterion and a set of tests for goodness of fit. Finally, the genetic parameters were computed from the maximum likelihood estimates of component distributions of the chosen genetic model (Table 4 and 5). An example from a simulated complete random block experiment with BIL population and their two parents is given for explanation of its usefulness (Table 7 and Fig.1).

Key words: Quantitative trait, BIL population, Major gene plus polygene mixed inheritance, Segregation analysis

CLC Number: 

  • Q348
[1] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[2] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] SUN Zhi-Guang, WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 61-70.
[6] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[7] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[8] Ying-Shuang LI,Dan HU,Jiao NIE,Ke-Hui HUANG,Yu-Ke ZHANG,Yuan-Li ZHANG,Heng-Zhi SHE,Xiao-Mei FANG,Ren-Wu RUAN,Ze-Lin YI. Genetic Analysis of Plant Height and Stem Diameter in Common Buckwheat [J]. Acta Agronomica Sinica, 2018, 44(8): 1185-1195.
[9] Zi-Ju DAI,Xin-Tao WANG,Qing YANG,Yan WANG,Ying-Ying ZHANG,Zhang-Ying XI,Bao-Quan LI. Major Quantitative Trait Loci Mapping for Tassel Branch Number and Construction of qTBN5 Near-isogenic Lines in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1127-1135.
[10] Hai-Ping GUO, Gao-Yang SUN, Xiao-Xiang ZHANG, Peng-Shuai YAN, Kun LIU, Hui-Ling XIE, Ji-Hua TANG, Dong DING, Wei-Hua LI. QTL Analysis of Under-ear Internode Length Based on SSSL Population [J]. Acta Agronomica Sinica, 2018, 44(04): 522-532.
[11] FANG Ya-Jie,ZHU Ya-Jun,WU Zhi-Chao,CHEN Kai,SHEN Cong-Cong,SHI Ying-Yao,XU Jian-Long. Genome-wide Association Study of Grain Appearance and Milling Quality in a Worldwide Collection of Indica Rice Germplasm [J]. Acta Agron Sin, 2018, 44(01): 32-42.
[12] ZHOU Yong,TAO Ya-Jun,YAO Rui,LI Chang,TAN Wen-Chen,YI Chuan-Deng,GONG Zhi-Yun, LIANG Guo-Hua*. QTL Mapping for Leaf Morphological Traits of Rice Using Chromosome Segment Substitution Lines [J]. Acta Agron Sin, 2017, 43(11): 1650-1657.
[13] ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602.
[14] SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621.
[15] GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min. QTL Mapping for Seed Size and Shape in Common Bean [J]. Acta Agron Sin, 2017, 43(08): 1149-1160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!