Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (03): 449-454.

• ORIGINAL PAPERS • Previous Articles     Next Articles

SCAR Markers and Preliminary Gene Mapping of a Dominant Semi-dwarf Mutant in Rice

LIU Bin-Mei; WU Yue-Jin; TONG Ji-Ping; WU Jin-De; YU Zeng-Liang; ZHANG Ying and CHENG Can   

  1. Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei 230031, Anhui
  • Received:2005-02-03 Revised:1900-01-01 Online:2006-03-12 Published:2006-03-12
  • Contact: WU Yue-Jin

Abstract:

Utilization of dwarf and semi-dwarf genes was one of the greatest achievements in rice breeding in 20th century. Through ion beam mutagenesis, a new rice semi-dwarf mutant Y98149 was obtained. The plant height of Y98149 was controlled by a pair of dominant genes, not affected by cytoplasm. This dominant semi-dwarf gene could be used to resolve the problem of the dwarf gene deficient in rice dwarf breeding and the heterobeltiosis of F1 in plant height in the utilization of inter-subspecific heterosis. Y98148 and Y98149 are near-isogenic lines(NILs) of dominant semi-dwarf gene. A RAPD analysis was made between NILs with arbitrary 10-mer oligonucleotide primers and three polymorphic RAPD bands were obtained. The three special RAPD bands were recovered ,purified and inserted in pUCm-T vector, and then transferred into E.coli. JM109. Positive colonies were identified for sequencing(Fig.1). According to the obtained sequences, 18–24-mer specific primers were designed as SCAR primers, and the SCAR-PCR reaction conditions were optimized. Consequently, RAPD markers S1041525, S1076549 and S1272403 were successfully converted into SCAR markers SCS1041498, SCS1076510 and SCS1272388, most optimal annealing temperature were 61℃,58℃ and 62℃,respectively. F2 progeny with 384 individuals of Y98148×Y98149 was analyzed to map SCAR markers in relationship to this gene. The result indicated that the genetic distances of SCS1041498, SCS1076510 and SCS1272388 to the gene were 12.6 cM, 7.5 cM and 16.3 cM, respectively. The blast result indicated nucleotide sequence of marker S1272403 was 99% identical with the BAC clones B1249D05(AP006451)and OJ1212_C12(AP005604)on chromosome 7 and was a single copy in rice genomic DNA. B1249D05 and OJ1212_C12 had a overlap of 23 kb, which marker S1272403 lay in. So this new semi-dwarf gene was considered to be located on chromosome 7 preliminarily. The markers are useful to marker-assisted selection for the breeding and tagging it with positional cloning.

Key words: Rice, Semi-dwarf mutant, Dominant gene, SCAR, Gene location

CLC Number: 

  • S511
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!