Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (08): 1135-1142.

• ORIGINAL PAPERS • Previous Articles     Next Articles

QTL Mapping and Epistasis Analysis for Yield and Its Components in Brassica napus L.

ZHANG Shu-Fen1 2,FU Ting-Dong1,ZHU Jia-Cheng2,WANG Jian-Ping2,WEN Yan-Cheng2,MA Chao-Zhi1   

  1. 1National Key Laboratory of Crop Genetic Improvement,Huazhong Agricultural University,Wuhan 430070, Hubei; 2Cotton and Oil Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2005-08-25 Revised:1900-01-01 Online:2006-08-12 Published:2006-08-12
  • Contact: MA Chao-Zhi

Abstract:

Since yield traits are complicated quantitative traits, QTLs mapping and genetic effects analyzed for seed yield and its components can help us to understand the source for heterosis and improve the selecting efficiency for good genotype of seed yield. A genetic linkage map consisting of 244 DNA markers was constructed based on F2 population derived from a cross between double low parent CMS maintainer 1141B and double high CMS restorer KenC1. The markers in the linkage map distributed on all the 20 main linkage groups and 1 triplet and covered 2 769.5 cM of the rapeseed genome. The statistic software of Windows QTL Cartographer Version2.0 and Composite Internal Mapping (CIM) were applied to detect QTLs for seed yield and its components, including seed yield per plant, number of silique per plant, number of seed per silique and 1000-seed weight. A total of 16 QTLs located in nine different linkage groups were identified for seed yield and the three component traits. There were three QTLs (the most QTLs) in LG6 and LG13, respectively. Each of these QTLs explained 0.38%–73.34% of the phenotypic variance. They had additional effect of alleles that came from maternal parent, the others from paternal parent for the same trait. Epistatic effect was screened in all 20 linkage groups using all possible loci pairs by two-way ANOVAs between co-dominant markers. Twenty-six two-locus combinations had significant epistatic effects. The results showed that there were many interaction loci involving the entire genome detected in yield traits. The epistatic interactions had pleiotropic effects, interactions were contained epistasis between QTL and non-QTL (non-significant effect loci) and between non-QTL. The later was the majority. In general, the independent effect of interaction loci was lower, on the opposite, the value of interaction effect was higher, and much higher than the total of independent effects.This indicated that the genes controlling seed yield was complicated. Epistasis interactions might play an important role as the basis of heterosis in Brassica napus L. Some questions about QTLs mapping were also discussed.

Key words: Brassica napus L., Yield components, Genetic linkage map, Molecular marker, QTL mapping, Epistatic effect

CLC Number: 

  • Q943
[1] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[2] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[3] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[4] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[7] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[8] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[12] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[13] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[14] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[15] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!