Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (5): 761-767.doi: 10.3724/SP.J.1006.2009.00761

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Identification and SSR Mapping of Two Powdery Mildew Resistance Genes in Wild Emmer (Triticum dicoccoides) Accessions IW3 and IW10

LI Gen-Qiao,FANG Ti-Lin**,ZHANG Hong-Tao,XIE Chao-Jie,YANG Zuo-Min,SUN Qi-Xin,LIu Zhi-Yong   

  1. Department of Plant Genetics & Breeding,China Agricultural University/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, Beijing 100193,China
  • Received:2008-12-04 Revised:2009-02-17 Online:2009-05-12 Published:2009-03-20
  • Contact: LIU Zhi-Yong

Abstract:

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a major wheat disease in the world. Deployment of resistant varieties is considered the most economical and effective way for controlling the disease. Wild emmer is one of the important genetic resources for wheat disease resistance genes. Two wild emmer accessions, IW3 and IW10, collected from Mount Hermon, Israel, are highly resistant to prevailing Bgt isolate E09. Genetic analyses of the F2 populations and F3 progenies derived from the crosses between Triticum durum cultivar Langdon and IW3 or IW10 indicated that each accession possessed a single dominant gene, temporarily designated MlIW3 and MlIW10, respectively, conferred resistance to Bgt isolate E09. Bulked segregant analysis (BSA) and SSR mapping revealed that both MlIW3 and MlIW10 were flanked by SSR markers Xbarc84 and Xwmc326 with genetic distances of Xbarc84–4.6 cM–MlIW3–1.6 cM–Xwmc326 and Xbarc84–6.6 cM–MlIW10–0.6 cM–Xwmc326. Both MlIW3 and MlIW10 were physically mapped on the distal bin of chromosome 3BL using Chinese Spring nullisomic–tetrasomic, ditelisomic, and deletion lines. According to the collecting geographic sites of IW3 and IW10 in Israel and the SSR mapping data, MlIW3 and MlIW10 appear to be the same or allelic to wild emmer derived powdery mildew resistance gene Pm41 or in the same cluster with it.

Key words: Wild emmer, Powdery mildew resistance genes, SSR marker

[1] Bennett F G A. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol, 1984, 33: 279–300
[2] Zhuang Q-S (庄巧生). Chinese wheat improvement and pedigree analysis. Beijing: China Agriculture Press, 2003. pp 469–487 (in Chinese)
[3] Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.): 4. Gene Pm24 in Chinese landrace Chiyacao. Theor Appl Genet, 1997, 95: 950–953
[4] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers D J, Apples R, Devos K M. Catalogue of gene symbols for wheat. In Appels R, Eastwood R, Lagudah E. eds. Proc 11th Int Wheat Genet Symp, Sydney University Press, Sydney, Australia, 2008
[5] Zhang Z-Y(张增艳), Chen X(陈孝), Zhang C(张超), Xin Z-Y(辛志勇), Chen X-M(陈新民). Selecting the pyramids of powdery mildew resistance genes Pm4b, Pm13 and Pm21 in wheat assisted by molecular marker. Sci Agric Sin (中国农业科学), 2002, 35(7): 789–793 (in Chinese with English abstract)
[6] Xie C-J(解超杰), Sun Q-X(孙其信), Yang Z-M(杨作民). Resistance of wild emmers from Israel to wheat rusts and powdery mildew at seedling stage. J Triticeae Crops (麦类作物学报), 2003, 23 (2): 39–42 (in Chinese with English abstract)
[7] Nevo E. Genetic resources of wild emmer, Triticum dicoccoides for wheat improvement: news and views. In: Li Z S, Xin Z Y, eds. Proc 8th Int Wheat Symp. Beijing: China Agricultural Science and Technology Press, 1995. pp 79–87
[8] Reader S M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 1991, 53: 57–60
[9] Rong J K, Millet E, Manisterski J. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121–126
[10] Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T M. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123: 21–29
[11] Blanco A, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet, 2008, 117: 135–142
[12] Li G Q, Fang T L, Xie C J, Yang T M, Nevo E, Fahima T, Sun Q X, Liu Z Y. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 2009 (in press)
[13] Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z. Identification and genetic mapping of a new recessive powdery mildew resistance gene Pm42 in wheat derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 2009 (in press)
[14] Mohler V, Zeller F J, Wenzel G, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 2005, 142: 161–167
[15] Ji X L, Xie C J, Ni Z F, Yang T M, Nevo E, Fahima T, Liu Z Y, Sun Q X. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica, 2008, 159: 385–390
[16] Liu Z, Sun Q, Ni Z, Yang T. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed, 1999, 118: 215–219
[17] Sharp P G, Kreis M, Shewry P R, Gale M D. Resistance to Puccinia recondite tritici in synthetic hexaploid wheats. Indian J Genet, 1988, 58: 263–269
[18] R?der M S, Korzun V, Wendehake K A. Microsatellite map of wheat. Genetics, 1998, 149: 2007–2023
[19] Pestsova E, Ganal M W, R?der M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–697
[20] Eujayl I, Sorrells M E, Baum M. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399–407
[21] Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/EXP3.0. Whitehead Institute Techn Rep 3rd edn. Cambridge, Masachussetts, USA: Whitehead Institute, 1992
[22] Sourdille P, Singh S, Cadalen T. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics, 2004, 4: 12–25
[23] Moseman J G, Nevo E, El-Morshidy M A, Zohary D. Resistance of Triticum dicoccoides collected in Israel to infection with Erysiphe graminis tritici. Euphytica, 1984, 33: 41–47
[24] Nevo E, Korol A B, Beiles A, Fahima T. Evolution of Wild Emmer and Wheat Improvement: Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Berlin/Heidelberg, Germany: Springer, 2002
[25] Xie W L, Nevo E. Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica, 2008, 164: 603–614
[26] Ceoloni C, Del Signore G, Pasquini M, Testa A. Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induced homoeologous recombination. In: Miller T E, Koebner R M D, eds. Proc 7th Intl Wheat Genetics Symp IPSR, Cambridge, UK, 1988. pp 221–226
[27] Cenci A, D’Ovidio R, Tanzarella O A, Ceoloni C, Porceddu E. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet, 1999, 98: 448–454
[28] Wang C Y, Ji W Q, Zhang G S, Wang Q Y, Cai D M, Xue X Z. SSR marker and preliminary chromosomal location of a powdery mildew resistance gene in common wheat germplasm N9134. Acta Agron Sin (作物学报), 2007, 33(1): 163–166
[29] Chen X, Luo Y, Xia X, Xia L, Chen X, Ren Z, He Z, Jia J, Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed, 2005, 124: 225–228
[30] Nevo E, Gerechter-Amitai Z K, Beiles A, Golenberg E M. Resistance of wild wheat to stripe rust: Predictive method by ecology and allozyme genotypes. Plant Syst Evol, 1986, 153: 13–30
[31] Fahima T, R?der M, Grama A, Nevo E. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet, 1998, 96: 187–195
[32] Nevo E, Gerechter-Amitai Z K, Beiles A. Resistance of wild emmer wheat to stem rust: Ecological, pathological and allozyme associations. Euphytica, 1991, 153: 121–130
[33] Avivi L. High grain protein content in wild tetraploid wheat Triticum dicoccoides Korn. In: Ramanujam S ed. Proc 5th Intel Wheat Genet Symp. Vol.1. New Delhi, India, 1979. pp 372–380
[1] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[2] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[3] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[4] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[5] Wei SHANG,Shen-Qing-Yu ZHAO,Jiang-Bo DANG,Qi-Gao GUO,Guo-Lu LIANG,Chao YANG,Yan ZHANG,Yi-Yin CHEN. Identification and Screening of Nicotiana tobacam-N. plumbaginifolia Heterologous Chromosome Plants Based on SSR Marker [J]. Acta Agronomica Sinica, 2018, 44(11): 1640-1649.
[6] WANG Xin-Yi,AI Xian-Tao,WANG Jun-Duo,LIANG Ya-Jun,GONG Zhao-Long,ZHENG Ju-Yun,Guo Jiang-Ping,MAMAT Mo-Ming,LI Xue-Yuan. Rapid Identification System of Purity and Authenticity in Cotton Varieties By SSR Markers [J]. Acta Agron Sin, 2017, 43(10): 1565-1572.
[7] WANG Jian-Hua,ZHANG Yao-Wen,CHENG Xu-Zhen,WANG Li-Xia. Construction of New Genetic Map and Identification of QTLs Related to Agronomic Traits in Mung Bean [J]. Acta Agron Sin, 2017, 43(07): 1096-1102.
[8] GONG Xi,JIANG Yun-Feng,XU Bin-Jie,QIAO Yuan-Yuan,HUA Shi-Yu,WU Wang,MA Jian,ZHOU Xiao-Hong,QI Peng-Fei,LAN Xiu-Jin. Mapping QTLs for Awn Length in Recombinant Inbred Line Population Derived from the Cross between Common Wheat and Tibetan Semi-wild Wheat [J]. Acta Agron Sin, 2017, 43(04): 496-500.
[9] GONG Hong-Bing,ZENG Sheng-Yuan,LI Chuang,ZUO Shi-Min,JING De-Dao,LIN Tian-Zi,CHEN Zong-Xiang,ZHANG Ya-Fang,QIAN Hua-Fei,YU Bo,SHENG Sheng-Lan,PAN Xue-Biao. Genetic Analysis and Taste Quality of Main Conventional Japonica Rice Varieties Grown in Jiangsu [J]. Acta Agron Sin, 2016, 42(07): 1083-1093.
[10] QIAO Lin-Yi,CHANG Jian-Zhong,GUO Hui-Juan,GAO Jian-Gang,ZHENG Jun,CHANG Zhi-Jian. Genome-Wide Analysis of TaNBS Resistance Genes and Development of Chromosome 2AL-specific NBS-SSR Markers in Wheat [J]. Acta Agron Sin, 2016, 42(06): 795-802.
[11] LI Xin,XIAO Lu,DU De-Zhi. Fine Mapping and Map Integration of Brsc1 Gene in Dahuang Rape (Brassica rapa L.) [J]. Acta Agron Sin, 2015, 41(07): 1039-1046.
[12] QIN Jin-Yan,LI Zai-Feng,YAN Xiao-Cui,SU Ji-Hua,YAO Zhan-Jun,LIU Da-Qun. Molecular Identification of Leaf Rust Resistance Gene in Wheat Line 5R625 [J]. Acta Agron Sin, 2015, 41(04): 651-657.
[13] LI Jian-Bo,QIAO Lin-Yi,LI Xin,ZHANG Xiao-Jun,ZHAN Hai-Xian,GUO Hui-Juan,REN Yong-Kang,CHANG Zhi-Jian. Molecular Mapping of Powdery Mildew Resistance Gene PmCH7124 in a Putative Wheat–Thinopyrum intermedium Introgression Line [J]. Acta Agron Sin, 2015, 41(01): 49-56.
[14] LU Xu-Zhong,NI Jin-Long,LI Li,WANG Xiu-Feng,MA Hui,ZHANG Xiao-Juan,YANG Jian-Bo. Construction of Rice Variety Based on ID Used SSR Fingerprint and Commodity Information [J]. Acta Agron Sin, 2014, 40(05): 823-829.
[15] BAI Peng,CHENG Xu-Zhen*,WANG Li-Xia,WANG Su-HuaCHEN Hong-Lin. Genetic Diversity, Population Structure and Linkage Disequilibrium in Adzuki Bean by Using SSR Markers [J]. Acta Agron Sin, 2014, 40(05): 788-797.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!