Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (08): 1310-1317.doi: 10.3724/SP.J.1006.2010.01310
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YAO Guo-Xin1,2, LI Jin-Jie1,ZHANG Qiang1,3,HU Guang-Long1,CHEN Chao1,TANG Bo1,ZHANG Hong-Liang1,LI Zi-Chao1,*
[1]Khush G S. Productivity improvements in rice [J].Nutr Rev [2]Khush G S. Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc, 2001, 60: 15-26 [3]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J].Theor Appl Genet [4]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. Rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase [J].Nat Genet [5]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication [J].Nat Genet [6]Xie X B, Song M H, Jin S N, Ahn S N, Suh J P, Hwang H G, McCouch S R. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon [J]. Theor Appl Genet [7]Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622 [8]Ma L-L(马丽莲), Guo L-B(郭龙彪), Qian Q(钱前). Germplasm resources and genetic analysis of large grain in rice. Chin Bull Bot (植物学通报), 2006, 23(4): 395-401 (in Chinese with English abstract) [9]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucl Acids Res [10]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1998, 76: 815-829 [11]Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L [J].). Theor Appl Genet [12]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L [J].). DNA Res [13]Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L [J].). Theor Appl Genet [14]Zhang Q F, Shen B Z, Dai X K, Mei M H, Maroof M S A, Li B Z. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice [J]. Proc Natl Acad Sci USA [15]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607 [16]Lander E S, Green P. Mapmaker: an Interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics [17]Gao Y M, Zhu J. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects [J].Theor Appl Genet [18]McCouch S R, Cho Y G, Yato M, Paul E, Blinstrub M. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13 [19]Liu R-H(刘仁虎), Meng J-L(孟金陵). Mapdraw, a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract) [20]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503-15507 [21]Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E V D, Cong B, Liu J P, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2, A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88 [22]Dorweiler L, Stec A, Kermicle J, Doebley J. Teosinte glume architecture 1, a genetic locus controlling a key step in maize evolution. Science, 1993, 262: 233-235 [23]Wang R L, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. Nature, 1999, 398: 236-239 [24]Zheng P Z, Allen W B, Roesler K, Williams M E, Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize [J].Nat Genet [25]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1 [J].Proc Natl Acad Sci USA [26]Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J F, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644 [27]Yano M, Katayose Y, Ashikari M, Yamanouchi U,Monnac L, Fuseb T, Babac T, Yamamotoc K, Umeharaa Y, Nagamuraa Y, Sasakia T.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2483 [28]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2 [J].Proc Natl Acad Sci USA [29]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. [30]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745 [31]Ren Z H, Gao J P, Li L G, Cai X L, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter [J].Nat Genet [32]Chen J J, Ding J H, Ouyang Y D, Du H Y, Yang J Y, Cheng K, Zhao J, Qiu S Q, Zhang J L, Yao J L, Liu K D, Wang L, Xu C G, Li X H, Xue Y B, Xia M, Ji Q, Lu J F, Xu M L, Zhang Q F. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice [J].Proc Natl Acad Sci USA [33]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice [J].Nat Genet [34]Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X Q, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication [J].Nat Genet [35]Jin J, Wei H, Gao J P, Yang J, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication [J].Nat Genet [36]Zhang D-L(张冬玲). Genetic Evolution and on Strategy of Core Collection of Chinese Cultivated Rice (Oryza sativa L.). PhD Dissertation of China Agricultural University, 2007 (in Chinese with English abstract) [37]Plant Cell Physiol, 2002, 43: 1096-1105 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[4] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[5] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[6] | LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401. |
[7] | HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196. |
[8] | WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859. |
[9] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[10] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[11] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[12] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[13] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[14] | LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347. |
[15] | ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098. |
|