Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (03): 415-423.doi: 10.3724/SP.J.1006.2011.00415
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHOU Li-Xia1,3,TANG Gui-Ying1,2,CHEN Gao1,3,BI Yu-Ping1,2,3,SHAN Lei1,2,*
[1]Wang S-B(万书波). Peanut Quality (花生品质学). Beijing: China Agricultural Science and Technology Press, 2005. p 2 (in Chinese) [2]Moore K M, Knauft D A. The inheritance of the high oleic acid in peanut. J Heredity, 1989, 80: 252–253 [3]Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of ahFAD2B control the the high oleic acid trait in cultivated peanut. Crop Sci, 2009, 49: 2029–2036 [4]Wang S-B(万书波). Peanut Production in China (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 1–10 (in Chinese) [5]St Angelo A J, Ory R L. Investigations of causes and prevention of fatty acid peroxidation in peanut butter. J Am Peanut Res Educ Assoc, 1973, 5: 128–133 [6]Grundy S M. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol in man. New Eng J Med, 1986, 314: 745–748 [7]Yu S L, Pan L J, Yang Q L, Min P, Ren Z K, Zhang H S. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genomics, 2008, 35: 679–685 [8]O'Keefe S F, Wiley V A, Knauft D A. Comparison of oxidative stability of high-and normal-oleic peanut oils. J Am Oil Chem Soc, 1993, 70: 489 [9]Bolton G E, Sanders T H. Effect of roasting oil composition on the stability of roasted high-oleic peanuts. J Am Oil Chem Soc, 2002, 79: 129–132 [10]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805 [11]Chong E W, Sinclair A J, Guymer R H. Facts on fats. Clin Exp Ophthalmol, 2006, 34: 464–471 [12]Colomer R, Menendez J A. Mediterranean diet, olive oil, and cancer. Clin Transl Oncol, 2006, 8: 15–21 [13]Mesa Garcia M D, Aguilera Garcia C M, Gil Hernandes A. Importance of lipids in the nutritional treatment of inflammatory diseases. Nutr Hosp, 2006, 21: 28–41 [14]Vassiliou E K, Gonzalez A, Garcia C, Tadros J H, Chakraborty G, Toney J H. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo system. Lipids Health Disease, 2009, 8: 25 [15]Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant Sci, 1993, 91: 15–21 [16]Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811 [17]Chu Y, Ramos L, Holbrook C C, Ozias-Akins P. Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the U.S. peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378 [18]Barkley N A, Chenault-Chamberli K D, Wang M L, Pittman R N. Development of a real time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed, 2010, 25: 541–548 [19]Chen Z B, Wang M L, Barkley N A, Pittman R N. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010, 28: 542–548 [20]Sukhija P S, Palmquist D L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem, 1988, 36: 1202–1206 [21]Yu S-L(禹山林). The Varieties and Pedigree of Peanut in China (中国花生品种及其系谱). Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 290–611 (in Chinese) [22]Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci, 2001, 41: 522–526 [23]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 4: 7–11 [24]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in spanish market-type lines. Theor Appl Genet, 2000, 101: 1131–1138 [25]Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004, 108: 1492–1502 [26]Harrison P M, Hegyi H, Balasubramanian S, Luscombe N M, Bertone P, Echols N, Johnson T, Gerstein M. Molecular fossils in the human genome: Identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res, 2002, 12: 272–280 [27]Zucherkandl E. Why so many noncoding nucleotides ? The eukaryote genomes as an epigenetic machine. Genetica, 2002, 115: 105–129 [28]Wu H(吴浩), Cao M-F(曹明富). Pseudogene. Bull Biol (生物学通报), 2005, 40(5): 20 (in Chinese) [29]Xiao G(肖钢), Zhang Z-Q(张振乾), Wu X-M(邬贤梦), Tan T-L(谭太龙), Guan C-Y(官春云). Cloning and characterization of six oleic acid desaturase pseudogenes of Brassica napus. Acta Agron Sin (作物学报), 2010, 36(3): 435−441 (in Chinese with English abstract) |
[1] | YU Ming-Yang,SUN Ming-Ming,GUO Yue,JIANG Ping-Ping,LEI Yong,HUANG Bing-Yan,FENG Su-Ping,GUO Bao-Zhu,SUI Jiong-Ming,WANG Jing-Shan,QIAO Li-Xian. Breeding New Peanut Line with High Oleic Acid Content Using Backcross Method [J]. Acta Agron Sin, 2017, 43(06): 855-861. |
[2] | LI Li-Na,,DU Pei,FU Liu-Yang,LIU Hua,XU Jing,QIN Li,YAN Mei,HAN Suo-Yi,HUANG Bing-Yan,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Development and Characterization of Amphidiploid Derived from Interspecific Cross between Cultivated Peanut and Its Wild Relative Arachis oteroi [J]. Acta Agron Sin, 2017, 43(01): 133-140. |
[3] | ZHENG Ling,SHI Ling-Min,TIAN Hai-Ying,SHAN Lei,BIAN Fei,GUO Feng. Cloning and Functional Analysis of Peanut AhDGAT2a Promoter? [J]. Acta Agron Sin, 2016, 42(07): 1094-1099. |
[4] | SHI Chun-Yan,SHEN Jia-Heng*,LI Wei. Double Fertilization and Duration of Phases in Peanut (Arachis hgpogaea L.) [J]. Acta Agron Sin, 2014, 40(08): 1513-1519. |
[5] | HUANG Bing-Yan,ZHANG Xin-You,MIAO Li-Juan,GAO Wei,HAN Suo-Yi,DONG Wen-Zhao,TANG Feng-Shou,LIU Zhi-Yong. Allelic Expression Variation of ahFAD2A and its Relationship with Oleic Acid Accumulation in Peanut [J]. Acta Agron Sin, 2012, 38(10): 1752-1759. |
[6] | LI Shuan-Zhu,WAN Yong-Shan,LIU Feng-Zhen. Cloning and Bioinformatic Analysis of γ-Tocopherol Methyltransferase Gene (γ-TMT) in Peanut [J]. Acta Agron Sin, 2012, 38(10): 1856-1863. |
[7] | HUANG Li,REN Xiao-Ping,ZHANG Xiao-Jie,CHEN Yu-Ning,JIANG Hui-Fang. Association Analysis of Agronomic Traits and Resistance to Aspergillus flavus in the ICRISAT Peanut Mini-Core Collection [J]. Acta Agron Sin, 2012, 38(06): 935-946. |
[8] | ZHANG Zhi-Meng,DAI Liang-Xiang,DING Hong,CHEN Dian-Xu,YANG Wei-Qiang,SONG Wen-Wu,WAN Shu-Bo. Identification and Evaluation of Drought Resistance in Different Peanut Varieties Widely Grown in Northern China [J]. Acta Agron Sin, 2012, 38(03): 495-504. |
[9] | HUANG Li,ZHAO Xin-Yan,ZHANG Wen-Hua,FAN Zhi-Ming,REN Xiao-Ping,LIAO Bo-Shou,JIANG Hui-Fang,CHEN Yu-Ning. Identification of SSR Markers Linked to Oil Content in Peanut (Arachis hypogaea L.) through RIL Population and Natural Population [J]. Acta Agron Sin, 2011, 37(11): 1967-1974. |
[10] | CHEN Xiao-Beng, ZHU Fang-He, HONG Yan-Ban, LIU Hai-Yan, ZHANG Er-Hua, ZHOU Gui-Yuan, LI Shao-Xiong, ZHONG Ni, WEN Shi-Jie, LI Xing-Yu, LIANG Xuan-Jiang. Analysis of Gene Expression Profiles in Pod and Leaf of Two Major Peanut Cultivars in Southern China [J]. Acta Agron Sin, 2011, 37(08): 1378-1388. |
|