Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (01): 133-140.doi: 10.3724/SP.J.1006.2017.00133

• RESEARCH NOTES • Previous Articles     Next Articles

Development and Characterization of Amphidiploid Derived from Interspecific Cross between Cultivated Peanut and Its Wild Relative Arachis oteroi

LI Li-Na1,2,**,DU Pei2,**,FU Liu-Yang2,3,LIU Hua2,XU Jing2,QIN Li2,YAN Mei2,HAN Suo-Yi2,HUANG Bing-Yan2,DONG Wen-Zhao2,TANG Feng-Shou2,ZHANG Xin-You2,*   

  1. 1 College of Agricultural, Henan University of Science and Technology, Luoyang 471023, China; 2 Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China; 3 School of life sciences, Zhengzhou University, Zhengzhou 450001, China
  • Received:2016-02-29 Revised:2016-09-18 Online:2017-01-12 Published:2016-09-27
  • Contact: 张新友, E-mail: haasz@126.com, Tel: 0371-65729560
  • Supported by:

    This study was supported by the Major Technology Research and Development Program of Henan Province (141100110600), the China Agriculture Research System (CARS-14), and the Henan Provincial Agriculture Research System (S2012-05).


Wild Arachis species are important genetic resources. To introgress resistant genes of Arachis species, developed a new amphidiploid AmE-4 through man-made cross between cultivated peanut variety Yuhua 9331 and a diploid Arachis species A. oteroi, with the assistance of following embryo rescue and chromosome doubling by colchicine treatment. AmE-4 was identified and characterized by fluorescence in situ hybridization (FISH) and SSR molecular marker. Morphological observation revealed significant differences in leaves between amphidiploid AmE-4 and Yuhua 9331, while the agronomic traits such as main stem height, length of first lateral branch and number of branches showed less difference between them. The date of first flower appearance in AmE-4 delayed sixty days compared with that in Yuhua 9331, and its pods setting and development were also poor, which would hinder its further utilization. In addition, 57 dominant or co-dominant SSR molecular markers were developed and could be used to identify translocation or introgression lines with A. oteroi chromosome fragment in future studies.

Key words: Peanut (Arachis hypogaea L.), Amphidiploid, Wild Arachis species, Molecular marker, FISH

[1] Stalker H T, Moss J P. Speciation, cytogenetics, and utilization of Arachis species. Adv Agron, 1987, 41: 1–40
[2] Holbrook C C, Stalker H T. Peanut breeding and genetic resources. Plant Breed Rev, 2003, 22: 297–356
[3] Mallikarjuna N, Jadhav D R, Reddy K, Husain F, Das K. Screening new Arachis amphidiploids and autotetraploids for resistance to late leaf spot by detached leaf technique. Eur J Plant Pathol, 2012, 132: 17–21
[4] 姜慧芳, 任小平, 黄家权, 雷永, 廖伯寿. 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质. 作物学报, 2009, 35: 25–32
Jiang H F, Ren X P, Huang J Q, Lei Y, Liao B S. Genetic variation of fatty acid components in Arachis species and development of interspecific hybrids with high oleic and low palmitic acids. Acta Agron Sin, 2009, 35: 25–32 (in Chinese with English abstract)
[5] Singh A K. Hybridization barriers among the species of Arachis L., namely of the sections Arachis (including the groundnut) and Erectoides. Genet Resour Crop Evol, 1998, 45: 41–45
[6] 张新友, 徐静, 汤丰收, 董文召, 臧秀旺, 张忠信. 花生种间杂种胚胎发育及内源激素变化. 作物学报, 2013, 39: 1127–1133
Zhang X Y, Xu J, Tang F S, Dong W Z, Zang X W, Zhang Z X. Embryonic development and changes of endogenous hormones in interspecific hybrids between peanut (A. hypogaea L.) and wild Arachis species. Acta Agron Sin, 2013, 39: 1127–1133 (in Chinese with English abstract)
[7] Mallikarjuna N, Senthilvel S, Hoisington D. Development of synthetic groundnuts (Arachis hypogaea L.) to broaden the genetic base of cultivated groundnut. Genet Resour Crop Evol, 2011, 58: 889–907
[8] Church G T, Starr J L, Simpson C E. A recessive gene for resistance to meloidogyne arenaria in interspecific Arachis spp. hybrids. Russ J Nematol, 2005, 37: 178–184
[9] 贺梁琼, 熊发前, 钟瑞春, 韩柱强, 李忠, 唐秀梅, 蒋菁, 唐荣华, 何新华. 利用SCoT标记分析花生栽培种 × A. chacoensis组合异源多倍化的早期基因组变化. 中国农业科学, 2013, 46: 1555–1563
He L Q, Xiong F Q, Zhong R C, Han Z Q, Li Z, Tang X M, Jiang J, Tang R H, He X H. Study on genome variations by using SCoT markers during allopolyploidization of the cultivated peanut × A. chacoensis. Sci Agric Sin, 2013, 46: 1555–1563 (in Chinese with English abstract)
[10] Ozias-Akins P, Singsit C, Branch W D. Interspecific hybrid inviability in crosses of Arachis hypogaea × A. stenosperma can be overcome by in vitro embryo maturation or somatic embryogenesis. J Plant Physiol, 1992, 140: 207–212
[11] Simpson C E, Starr J L. Registration of ‘COAN’ peanut. Crop Sci, 2001, 41: 918
[12] Tallury S P, Isleib T G, Stalker H T. Developing peanut cultivars with genetic resistance to early leafspot. In: Proceedings of the American Peanut Research and Educational Society, 2005. p 37
[13] 王兴军, 张新友. 花生生物技术研究. 北京: 科学出版社, 2015. p 22
Wang X J, Zhang X Y. Studies on Peanut Biotechnology. Beijing: Beijing Science Press, 2015. p 22
[14] Mallikarjuna N, Sastri D C. Morphological, cytological and disease resistance studies of the intersectional hybrid between Arachis hypogaea L. and A. glabrata Benth. Euphytica, 2002, 126: 161–167
[15] Mallikarjuna N, Hoisington D. Peanut improvement: production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Secur, 2009, 1: 457–462
[16] Stalker H T, Beute M K, Shew B B, Barker K R. Registration of two root-knot nematode-resistant peanut germplasm lines. Crop Sci, 2002, 42: 312–313
[17] Pasupuleti J, Ramaiah V, Rathore A, Rupakula A, Reddy R K, Waliyar F, Nigam S N. Genetic analysis of resistance to late leaf spot in interspecific groundnuts. Euphytica, 2013, 193: 13–25
[18] Sharma S B, Ansari M A, Varaprasad K S, Singh A K, Reddy L J. Resistance to Meloidogyne javanica in wild Arachis species. Genet Resour Crop Ev, 1999, 46: 557–568
[19] He G H, Meng R H, Newman M, Gao G Q, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2003, 3: 1–6
[20] Moretzsohn M C, Leoi L, Proite K, Guimaraes P M, Leal-Bertioli S, Gimenes M A, Martins W S, Valls J F, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060–1071
[21] Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol, 2005, 5: 77–79
[22] Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064–1070
[23] 范宝磊, 张耀兮, 吴仲珍, 岳霞丽, 索有瑞. 不同品系油菜花粉生活力测定方法比较. 安徽农业科学, 2012, 40: 2596–2597
Fan B L, Zhang Y X, Wu Z Z, Yue X L, Suo Y R. Comparison of different determination methods of the pollen vitality of different lines rape. J Anhui Agric Sci, 2012, 40: 2596–2597 (in Chinese with English abstract)
[24] 杜培, 张新友, 李丽娜, 黄冰艳, 易明林, 董文召, 汤丰收. 高质量花生根尖细胞染色体制片方法研究. 河南农业科学, 2013, 42(3): 31–35
Du P, Zhang X Y, Li L N, Huang B Y, Yi M L, Dong W Z, Tang F S. Study on slide preparation methods for high quality chromosomes for root tip cell of Arachis. J Henan Agric Sci, 2013, 42(3): 31–35 (in Chinese with English abstract)
[25] Robledo G, Lavia G I, Seijo G. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet, 2009, 118: 1295–1307
[26] Stalker H T, Wynne J C. cytology of interspecific hybrid in section Arachis of peanut. Peanut science, 1979, 6: 110–114
[27] Stalker H.T. Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica, 1984, 33: 529–538
[28] Company M, Stalker H T, Wynne J C. Cytology and leafspot resistance in Arachis hypogaea × wild species hybrids. Euphytica, 1982, 31: 885–893
[29] 杨小明, 组织培养中秋水仙素诱导葡萄多倍体研究, 甘肃农业大学硕士论文, 2003. p 6
Yang X M. Studies on Polyploidy Grapevine Induction by Colchicine Treatment Through Tissue Culture. MS Thesis of Gansu Agricultural University, 2003. p 6 (in Chinese with English abstract)
[30] Lavia G I, Ortiz A M, Fernández A. Karyotypic studies in wild germplasm of Arachis (Leguminosae). Genet Resour Crop Evol, 2009, 56:755–764
[31] Seijo J G, Lavia G I, Fernández A, Krapovickas A, Ducasse D, Moscone E A. Physical mapping of 5S and 18S-25S rRNA genes by FISH as evidences that A. duranensis and A. ipaensis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot, 2004, 91: 1294–1303
[32] 杜培, 刘华, 李丽娜, 秦利, 张忠信, 黄冰艳, 董文召, 汤丰收, 亓增军, 张新友. 基于顺序GISH-FISH花生栽培种的染色体分析. 中国农业科学, 2015, 48: 1854–1863
Du P, Liu H, Li L N, Qin L, Zhang Z X, Huang B Y, Dong W Z, Tang F S, Qi Z J, Zhang X Y. Chromosome analysis of peanut (Arachis hypogaea L.) based on sequential GISH-FISH. Sci Agric Sin, 2015, 48: 1854–1863 (in Chinese with English abstract)
[33] Krapovickas A, Gregory W C. Taxonomia del genero Arachis (Leguminosae). Bonplandia, 1994, 8: 1–186
[34] Jiang J M, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73: 199–212

[1] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[2] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[3] TAO Jun, LAN Xiu-Jin. Molecular cytogenetic identification of wheat-Thinopyrum intermedium 2A/6St substitution strain 014-459 [J]. Acta Agronomica Sinica, 2022, 48(2): 511-517.
[4] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[5] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[6] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[7] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[8] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[9] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[10] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[11] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[12] XU Yi,ZHANG Lie-Mei,GUO Yan-Chun,QI Jian-Min,ZHANG Li-Lan,FANG Ping-Ping,ZHANG Li-Wu. Core collection screening of a germplasm population in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2019, 45(11): 1672-1681.
[13] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
[14] Jun-Hua YE,Qi-Tai YANG,Zhang-Xiong LIU,Yong GUO,Ying-Hui LI,Rong-Xia GUAN,Li-Juan QIU. Genotyping of SCN, SMV Resistance, Salinity Tolerance and Screening of Pyramiding Favorable Alleles in Introduced Soybean Accessions [J]. Acta Agronomica Sinica, 2018, 44(9): 1263-1273.
[15] Yun-Yan FEI, Jie YANG, Fang-Jun FAN, Fang-Quan WANG, Wen-Qi LI, Jun WANG, Jin-Yan ZHU, Wei-Gong ZHONG. Genetic Analysis of Imazethapyr Resistance in Rice and the Closely Linked Marker Selection and Application [J]. Acta Agronomica Sinica, 2018, 44(05): 716-722.
Full text



No Suggested Reading articles found!