Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (08): 1361-1368.doi: 10.3724/SP.J.1006.2012.01361

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Chromosomal Localization of Transcription Factors in Gossypium hirsutum

LI Li**,WANG Shun-Feng**,LIU Fang,TANG Shi-Yi,TAN Zhao-Yun,ZHANG Jian,TENG Zhong-Hua,LIU Da-Jun,ZHANG Zheng-Sheng*   

  1. College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China
  • Received:2011-12-31 Revised:2012-04-16 Online:2012-08-12 Published:2012-06-04
  • Contact: 张正圣, E-mail: zhangzs@swu.edu.cn, Tel: 13883608797

Abstract: A total of 1 455 SSR primer pairs designed from 1 116 Gossypium hirsutum transcription factor DNA sequences in Plant Transcription Factor Databases (PTFD) were used to screen the polymorphic primers between upland cotton cultivars/lines Yumian 1, 7235, CCRI35, and T586. A total of 66 pairs of polymorphic primers were obtained, which are related to 64 transcription factors among 27 transcription factor families. The polymorphic primers included 23 pairs between yumian1 and CRI35, 30 pairs between Yumian 1 and T586, and 33 pairs between Yumian 1 and 7235. Sixty-six polymorphic primer pairs were used to genotype the corresponding recombinant inbred line populations, and 93 loci were obtained, including 23 loci in population (Yumian 1×CRI35) F2:6, 32 loci in population (Yumian 1×T586) F2:7, and 38 loci in population (Yumian 1×7235) F2:6. The transcription factor SSR loci, together with other SSR loci which have already been mapped on upland cotton linkage map in our laboratory, were used to conduct genetic linkage analysis, and 84 loci were mapped on 23 chromosomes, including 32 loci on A genome and 52 on D genome.

Key words: Gossypium hirsutum L., Transcription factor, Chromosomal localization

[1]Broun P, Liu Y, Queen E, Schwarz Y, Abenes M L, Leibman M. Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochem Rev, 2006, 5: 27–38

[2]Schwecheimer C, Zourelidou M C, Bevan M W. Plant transcription factors studies. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 127–150

[3]Oñate-Sánchez L, Anderson J P, Young J, Singh K B. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol, 2007, 143: 400–409

[4]Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001, 13: 1035–1046

[5]Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of Ethylene-Response-Factor1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 2002, 29: 23–32

[6]Gu Y Q, Wildermuth M C, Chakravarthy S, Loh Y T, Yang C, He X, Han Yu, Martin G B. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 2002, 14: 817–831

[7]Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang X C, Huang R. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol, 2004, 55: 825–834

[8]Cao Y, Wu Y, Zheng Z, Song F. Over-expression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol, 2006, 67: 202–211

[9]Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet, 1997, 13: 67–73

[10]Qian S-Y(钱思颖), Huang J-Q(黄骏麒), Peng Y-J(彭跃进), Zhou B-L(周宝良), Ying M-C(应苗成), Shen D-Z(沈端庄), Liu G-L(刘桂玲), Hu T-X(胡廷馨), Xu Y-J(徐英俊), Gu L-M(顾立美), Ni W-C(倪万潮), Chen S(陈松). Studies on the hybrid of G. hirsutum L. and G. anomalum Wawr. & Peyr. and application in breeding. Sci Agric Sin (中国农业科学), 1992, 25(6): 44–51 (in Chinese with English abstract)

[11]Wan Q, Zhang Z, Hu M, Chen L, Liu D J, Chen X, Wang W, Zheng J. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica, 2007, 158: 241–247

[12]Ni H-J(倪慧娟), Wang W(王威), Zhang J(张建), Liu D-J(刘大军), Teng Z-H(滕中华), Zhang Z-S(张正圣). QTL mapping of yield and fiber quality traits in upland cotton (Gossypium hirsutum L.) using F2 and its derived populations. J Southwest Univ (西南大学学报), 2011, 33(6): 7–14 (in Chinese with English abstract)

[13]Zhang Z, Xiao Y, Luo M, Li X, Luo X, Hou L, Li D, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91–99

[14]Van Ooijen J W, Voorrips R E. JoinMap 4.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, 2006

[15]Wang K, Song X, Han Z, Guo W, Yu J Z, Sun J, Pan J J, Kohel J, Zhang T. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006, 113: 73–80

[16]Zhang Z, Hu M, Zhang J, Liu D, Zheng J, Zhang K, Wang W, Wan Q. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in (Gossypium hirsutum L.). Mol Breed, 2009, 24: 49–61

[17]An C, Saha S, Jenkins J N, Ma D P, ScheZer B E, Kohel R J, Yu J Z, Stelly D M, Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. Theor Appl Genet, 2008, 116: 1015–1026

[18]Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527–541

[19]Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, Zhang X. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between G. hirsutum and G. barbadense. BMC Genom, 2011, 12: 15

[20]Riechmann J L. Transcription factors of Arabidopsis and rice: a genomic perspective. In: Grasser K D ed. Regulation of Transcription in Plants. Blackwell, Oxford. Annu Plant Rev, 2006, 29: pp28–53

[21]Shiu, S H, Shih M C, Li W H. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol, 2005, 139: 18–26

[22]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447–56

[23]Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet, 1999, 261: 660–671

[24]Cedroni M L, Cronn R C, Adams K L, Wilkins T A, Wendel J F. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Mol Biol, 2003, 51: 313–325

[25]Hsu C Y, Jenkins J N, Saha S, Ma D P. Transcriptional regulation of the lipid transfer protein gene LTP3 cotton fiber by a novel MYB protein. Plant Sci, 2005, 168: 167–181

[26]Lee J J, Hassan O S S, Gao W, Wei N E, Kohel R J, Chen X Y, Payton P, Sze S H, Stelly D M, Chen Z J. Developmental and gene expression analysis of a cotton naked seed mutant. Planta, 2006, 223: 418–432

[27]Yang S S, Cheung F, Lee J J, Ha M, Wei N E, Sze S H, Stelly D M, Thaxton P, Triplett B, Town C D, Chen Z J. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J, 2006, 47: 761–775

[28]Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress response. Curr Opin Plant Biol, 2002, 5: 430–436

[29]Walford S A, Wu Y R, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development. Plant J, 2011, 65: 785–797

[30]Chrispeels H E, Oettinger H, Janvier N, Tague B W. AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation. Plant Mol Biol, 2000, 42: 279–90

[31]Nakano T, Suzuki K, FujimuraT, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411–432
[1] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[2] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[3] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[4] GE Min, WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize [J]. Acta Agronomica Sinica, 2021, 47(5): 807-813.
[5] Meng-Ting YANG, Chun ZHANG, Zuo-Ping WANG, Hua-Wen ZOU, Zhong-Yi WU. Cloning and functional analysis of ZmbHLH161 gene in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 2008-2016.
[6] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[7] ZHOU Xiang-Yang,ZHAO Liang,DI Jia-Chun,CHEN Xu-Sheng. Molecular identification and chromosomal mapping of exogenous Bt gene in two insect-resistant cotton varieties [J]. Acta Agronomica Sinica, 2019, 45(9): 1440-1445.
[8] YIN Long-Fei,WANG Zhao-Yang,WU Zhong-Yi,ZHANG Zhong-Bao,YU Rong. Cloning and functional analysis of ZmGRAS31 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(7): 1029-1037.
[9] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[10] ZHANG Hong-Juan,LI Yu-Ying,MIAO Li-Li,WANG Jing-Yi,LI Chao-Nan,YANG De-Long,MAO Xin-Guo,JING Rui-Lian. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2019, 45(11): 1615-1627.
[11] Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379.
[12] Ying ZHU, Shan-Shan CHU, Pei-Pei ZHANG, Hao CHENG, De-Yue YU, Jiao WANG. An R2R3-MYB Transcription Factor GmMYB184 Regulates Soybean Isoflavone Synthesis [J]. Acta Agronomica Sinica, 2018, 44(02): 185-196.
[13] CAO Hong-Li,WANG Lu,QIAN Wen-Jun,HAO Xin-Yuan,YANG Ya-Jun,WANG Xin-Chao. Positive Regulation of CsbZIP4 Transcription Factor on Salt Stress Response in Transgenic Arabidopsis [J]. Acta Agron Sin, 2017, 43(07): 1012-1020.
[14] HU Hai-Yan,LIU Di-Qiu,LI Yun-Jing,LI Yang,TU Li-Li*. Identification of Promoter GhFLA1 Preferentially Expressed during Cotton fiber Elongation [J]. Acta Agron Sin, 2017, 43(06): 849-854.
[15] CHEN Xu-Sheng,DI Jia-Chun,ZHOU Xiang-Yang,ZHAO Liang. Hormone Expression and Tp Gene Chromosomal Localization of Tall Plant Mutant from Upland Cotton [J]. Acta Agron Sin, 2017, 43(06): 935-939.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!