Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (10): 1766-1774.doi: 10.3724/SP.J.1006.2013.01766

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Gibberellin Responsiveness and Gene Mapping of the Rice Extreme Dwarf Mutant s2-47

LI Chen-Chen1,2,HOU Lei1,YIN Liang3,ZHAO Jin-Feng2,YUAN Shou-Jiang3,ZHANG Wen-Hui1,*,LI Xue-Yong2,*   

  1. 1 School of Life Science, Liaocheng University, Liaocheng 252059, China; 2 National Key Facility for Crop Gene Resource and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Shandong Rice Research Institute, Jinan 250100, China
  • Received:2013-02-01 Revised:2013-06-09 Online:2013-10-12 Published:2013-08-01
  • Contact: 李学勇, E-mail: lixueyong@caas.cn, Tel: 010-82107409; 张文会, E-mail: whzhang@lcu.edu.cn, Tel: 13563589359

Abstract:

We have isolated a dwarf mutant s2-47 from Nipponbare mutagenized by EMS, which is an extreme dwarf with dark green leaves and without reproductive development. GA3 treatment of seedlings and α-amylase activity analysis in endosperm showed that the mutated gene is involved in GA biosynthesis. Fine mapping showed that the mutant phenotype was tightly linked with the OsCPS1 locus, which encodes the ent-copalyl diphosphate synthase, the first key enzyme in GA biosynthesis. Sequence analysis showed that there is a single nucleotide deletion in the 6th exon of the OsCPS1 gene in the s2-47 mutant. OsCPS1 was expressed in all the above-ground parts of plants with the highest expression in nodes. The OsCPS1 expression was down-regulated by GA3 treatment but up-regulated in the s2-47 mutant.

Key words: Rice, Dwarf mutant, Gibberellin, Gene mapping, OsCPS1

[1]Aquino R C, Jennings P R. Inheritance and significance of dwarfism in an indica rice variety. Crop Sci, 1966, 6: 551–554



[2]Tsai K H. Detection of a new semidwarfing gene, sd-8(t). Rice Genet Newsl, 1994, 11: 80–83



[3]Tanisaka T. Two useful semidwarf genes in short-culm mutant line HS90 of rice. Breed Sci, 1994, 44: 397–403



[4]Padma A, Reddy G. Genetic behavior of five induced dwarf mutants in an indica rice cultivar. Crop Sci, 1977, 17: 860–863



[5]Foster K W, Rutger J N. Inheritance of semidwarfism in rice, Oryza sativa L. Genetics, 1978, 88: 559–574



[6]Silverstone A L, Sun T. Gibberellins and green revolution. Trends Plant Sci, 2000, 5: 1–2



[7]Wolfgang S, Marc H E, Peter M C. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberelin20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048



[8]Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G, Kitano H, Matsuoka M. Loss-of-function of a rice Gbbberelin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci, 2002, 52: 143–150



[9]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702



[10]Huang X-Z(黄先忠), Jiang C-F(蒋才富), Liao L-L(廖立力), Fu X-D(傅向东). Progress on molecular foundation of GA biosynthesis pathway and signaling. Chin Bull Bot (植物学通报), 2006, 23(5): 499–510 (in Chinese with English abstract)



[11]Hou L(侯雷), Yuan S-J(袁守江), Yin L(尹亮), Zhao J-F(赵金凤), Wan G-F(万国峰), Zhang W-H(张文会), Li X-Y(李学勇). Phenotypic analysis and molecular characterization of two allelic mutants of the Dwarf18 gene in rice. Acta Agron Sin (作物学报), 2012, 38(8): 1416–1424 (in Chinese with English abstract) 



[12]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698



[13]Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Xiang H, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19: 2140-2155 



[14]Zhang Y-Y(张迎迎), He Z-H(何祖华). Gibberellin metabolism and signal transduction in higher plants. Plant Physiol J (植物生理学通讯), 2010, 46(7): 623–630 (in Chinese with English abstract)



[15]Davies P J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. The Netherlands: Kluwer Academic Publishers, 1995. pp 13–38



[16]Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523–530



[17]Prisic S, Peters R J. Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiol, 2007, 144: 445–454



[18]Swain S M, Ross J J, Reid J B, Kamiya Y. Gibberellins and pea seed development: expression of the lhi,ls and le5839 mutations. Planta, 1995, 195: 426–433



[19]Sun T P, Goodman H M, Ausubel F M. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell, 1992, 4: 119–128



[20]Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84



[21]Ait-Ali T, Swain S M, Reid J B, Sun T, Kamiya Y. The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J, 1997, 11: 443–454



[22]Tomoaki S. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653



[23]Wang H(王慧), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强). Genetic analysis of space induced rice dwarf mutant CHA-1 and its response to gibberellic acid (GA3). Chin J Rice Sci(中国水稻科学), 2004, 18(5): 391–395 (in Chinese with English abstract)



[24]Lanahan M B, Ho T H. Slender barley: a constitutive gibberellin-response mutant. Planta, 1988, 175: 107–114



[25]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325



[26]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[27]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecu-lar evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[28]Saitou N, Nei M.The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425



[29]Otomo K, Kenmoku H, Oikawa H, König W A, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T. Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J, 2004, 39: 886–893

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[14] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[15] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!