Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (02): 320-328.doi: 10.3724/SP.J.1006.2014.00320

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Response of Soluble Substances Content in Flag Leaves during Late Growth Stage and Plant Productivity of Rice to Elevated CO2 in North China

WANG Hui-Zhen1,ZHAO Hong-Liang1,FENG Yong-Xiang2,JIANG Le1,NING Da-Ke1,XIE Li-Yong1,*,LIN Er-Da3,*   

  1. 1 College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; 2 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China; 3 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China?
  • Received:2013-05-15 Revised:2013-08-31 Online:2014-02-12 Published:2013-11-14
  • Contact: 谢立勇, E-mail: xly0910@163.com; Tel: 024-88487135; 林而达, lined@ami.ac.cn,Tel: 010-82105998

Abstract:

The responses of high yield and good quality japonica varieties Songjing 9 and Daohuaxiang 2 to elevated CO2 concentration in North China were studied by using FACE experimental system. The soluble sugar content, soluble protein content and total chlorophyll content in flag leaves of rice were measured at late growth stage, rice yield per plot and yield components were measured at harvest stage. The results showed that elevated CO2 concentration increased soluble sugar content in flag leaf for Songjing 9 and Daohuaxiang 2 obviously during heading stage, milky stage and ripening stage, with the peak value of 11.7% and 47.5%, respectively. Elevated CO2 concentration obviously reduced soluble protein content in flag leaf during heading stage and ripening stage for Songjing 9 and Daohuaxiang 2, which was 16.2% and 10.5% in the largest reduction, respectively. Elevated CO2 concentration obviously increased total chlorophyll content in flag leaf for Songjing 9 and Daohuaxiang 2 from heading stage to milky stage, with the largest increase of 18.9% and 22.5%, and then decreased after milk stage. Elevated CO2 concentration increased seed yield of individual plant, total biomass and economic coefficient with an average of 6.82%, 1.50%, 12.64% for Songjing 9, and 2.56%, 2.13%, 26.05% for Daohuaxiang 2. The results indicated that elevated atmospheric CO2 concentration increases rice plant productivity, but with diffrence effects on soluble sugar, soluble protein and chlorophyll in flag leaf of different rice varieties at different growth stages. The reason is likely that is elevated atmospheric CO2 concentration promotes rice growth and development, leading to a early maturity, then senescent leaf promotes soluble sugar’s decomposition, and speeds up transportation of soluble protein from function leaf to seeds.

Key words: FACE, Rice, Late growth stage, Soluble sugar, Soluble protein, Chlorophyll, Plant productivity

[1]Seneweera S, Makino A, Hirotsu N, Norton R, Suzuki Y. New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase / oxygenase content in rice leaves. Environ Exp Bot, 2011, 71: 128–136

[2]Wang Y X, Michael F, Song Q L, Yang L X. The impact of atmospheric CO2 concentration enrichment on rice quality—A research review. Acta Ecol Sin, 2011, 31: 277–282

[3]Fukayama H, Sugino M, Fukuda T, Masumoto C, Taniguchi Y, Okada M, Sameshima R, Hatanaka T, Misoo S, Hasegawa T, Miyao M. Gene expression profiling of rice grown in free air CO2 enrichment (FACE) and elevated soil temperature. Field Crops Res, 2011, 121: 195–199

[4]IPCC. Climate Change, 2007: Impacts, Adaptation and Vulnerability. Geneva, Switzerland: IPCC Secretariat, 2007

[5]房世波, 沈斌, 谈凯炎, 高西宁. 大气CO2和温度升高对农作物生理及生产的影响. 中国生态农业学报, 2010, 18: 1116–1124

Fang S B, Shen B, Tan K Y, Gao X N. Effect of elevated CO2 concentration and increased temperature on physiology and production of crops. Chin J Eco-Agric, 2010, 18: 1116–1124 (in Chinese with English abstract) 

[6]王润佳, 高世铭, 张绪成. 高大气CO2浓度下C3植物叶片水分利用效率升高的研究进展. 干旱地区农业研究, 2010, 28(6): 190–195

Wang R J, Gao S M, Zhang X C. The physiological mechanism of the increment of C3 plant leaf water use efficiency under high atmospheric CO2 condition. Agric Res Arid Areas, 2010, 28(6): 190–195 (in Chinese with English abstract)  

[7]黄建晔, 杨洪建, 杨连新, 刘红江, 董桂春, 朱建国, 王余龙. 开放式空气CO2浓度增加(FACE)对水稻产量形成的影响及其与氮的互作效应. 中国农业科学, 2004, 37: 1824–1830

Huang J Y, Yang H J, Yang L X, Liu H J, Dong G C, Zhu J G, Wang Y L. Effects of free-air CO2 enrichment (FACE) on yield formation of rice and its interaction with nitrogen. Sci Agric Sin, 2004, 37: 1824–1830 (in Chinese with English abstract) 

[8]杨连新, 王云霞, 朱建国, 王余. 十年水稻FACE研究的产量响应. 生态学报, 2009, 29(3): 1486–1497

Yang L X, Wang Y X, Zhu J G, Wang Y L. What have we learned from 10 years of Free Air CO2 Enrichment (FACE) experiments on rice? CO2 and grain yield. Acta Ecol Sin, 2009, 29: 1486–1497 (in Chinese with English abstract)

[9]范桂芝, 蔡庆生, 王春明, 万建民, 朱建国. 水稻株高性状对大气CO2浓度升高的响应. 作物学报, 2007, 33: 433–440

Fan G Z, Cai Q S, Wang C M, Wan J M, Zhu J G. Response of plant height to free air CO2 enrichment in rice. Acta Agron Sin, 2007, 33: 433–440 (in Chinese with English abstract)

[10]黄建晔, 杨洪建, 董桂春, 王余龙, 朱建国, 杨连新, 单玉华. 开放式空气CO2 浓度增高对水稻产量形成的影响. 应用生态学报, 2002, 13: 1210–1214

Huang J Y, Yang H J, Dong G C, Wang Y L, Zhu J G, Yang L X, Shan Y H. Effects of free-air CO2 enrichment (FACE) on yield formation in rice (Oryza sativa L.). Chin J Appl Ecol, 2002, 13(10): 1210–1214 (in Chinese with English abstract)

[11]杨洪建, 杨连新, 刘红江, 黄建晔, 董桂春, 朱建国, 王余龙. FACE 对水稻根系及产量的影响. 作物学报, 2005, 31: 1221–1226

Yang H J, Yang L X, Liu H J, Huang J Y, Dong G C, Zhu J G, Wang Y L. Effects of free-air CO2 enrichment (FACE) on root system and its relations with yield in rice (Oryza sativa L.). Acta Agron Sin, 2005, 31: 1221–1226 (in Chinese with English abstract)

[12]杨连新, 王余龙, 黄建晔, 杨洪建, 刘红江. 开放式空气CO2浓度增高对水稻生长发育影响的研究进展. 应用生态学报, 2006, 17: 1331–1337

Yang L X, Wang Y L, Huang J Y, Yang H J, Liu H J. Responses of rice growth and development to free-air CO2 enrichment (FACE): A research review. Chin J Appl Ecol, 2006, 17: 1331–1337 (in Chinese with English abstract)

[13]Kim H Y, Lieffering M, Kobayashi K, Okada M, Mitchell M W, Gumpertz M. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Res, 2003, 83: 261–270

[14]Leakey A D, Ainsworth E A, Bernacchi C J, Rogers A, Long S P, Ort D R. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot, 2009, 28: 1–18

[15]Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim H Y, Kobayashi K. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytologist, 2001, 150: 251–260

[16]郝兴宇, 林而达, 杨锦忠, 居辉, 马占云, 韩雪, 王贺然, 杨万深. 自由大气CO2浓度升高对夏大豆生长与产量的影响. 生态学报, 2009, 29: 4595–4603

Hao X Y, Lin E D, Yang J Z, Ju H, Ma Z Y, Han X, Wang H R, Yang W S. Effects of free air CO2 enrichment (FACE) on growth and yield of summer soybean. Acta Ecol Sin, 2009, 29: 4595–4603 (in Chinese with English abstract)

[17]张志良, 瞿伟菁. 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2005. pp 67–159

Zhang Z L, Zhai W J. The Guidance of Plant Physiology Experiments, 3rd edn. Beijing: Higher Education Press, 2005. pp 67–159 (in Chinese)

[18]谢立勇, 林而达, 孙芳, 赵海燕. 全生育期二氧化碳与温度处理对水稻生理性状的影响初报. 中国农业大学学报, 2006, 11(1): 17–21

Xie L Y, Lin E D, Sun F, Zhao H Y. Effects of CO2 enrichment and temperature increase during growth duration on physiological characteristics of rice. J China Agric Univ, 2006, 11(1): 17–21 (in Chinese with English abstract)

[19]胡健, 王余龙, 杨连新, 周娟, 朱建国. FACE对武香粳14 各生育期功能叶片及根系可溶蛋白含量的影响. 农业环境科学学报, 2006, 25: 1117–1121

Hu J, Wang Y L, Yang L X, Zhou J, Zhu J G. Effect of free-air CO2 enrichment (FACE) on concentrations of soluble protein in functional leaves and roots of japonica rice (Oryza sativa L.) cultivar Wuxianjing 14. J Agro-Environt Sci, 2006, 25: 1117–1121 (in Chinese with English abstract)

[20]刘贞琦, 刘振业, 马达鹏, 曾淑芬. 水稻叶绿素含量及其与光合速率关系的研究. 作物学报, 1984, 10: 57–61

Liu Z Q, Liu Z Y, Ma D P, Zeng S F. A study on the relation between chlorophyll content and photosynthetic rate of rice. Acta Agron Sin, 1984, 10: 57–61 (in Chinese with English abstract)

[21]金松恒, 蒋德安, 王品美, 赵凯, 翁晓燕. 水稻孕穗期不同叶位叶片的气体交换与叶绿素荧光特性. 中国水稻科学, 2004, 18: 443–448

Jin S H, Jiang D A, Wang P M, Zhao K, Weng X Y. Characteristics of gas exchange and chlorophyll fluorescence in different position leaves at booting stage in rice plants. Chin J Rice Sci, 2004, 18: 443–448 (in Chinese with English abstract)

[22]童汉华, 梅捍卫, 邢永忠, 曹一平, 余新桥, 章善庆, 罗利军. 水稻生育后期剑叶形态和生理特性的QTL定位. 中国水稻科学, 2007, 21: 493–499

Tong H H, Mei H W, Xing Y Z, Cao Y P, Yu X Q, Zhang S Q, Luo L J. QTL analysis for morphological and physiological characteristics of flag leaf at the late developmental stage in rice. Chin J Rice Sci, 2007, 21: 493–499 (in Chinese with English abstract)

[23]Imai K, Mae T, Suzuki Y, Makino A, Mae T. Effects of nitrogen nutrition on the relationships between the levels of rbcS and rbcL mRNAs and the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase synthesized in the eighth leaves of rice from emergence through senescence. Plant Cell Environ, 2005, 28: 1589–1600

[24]胡健, 杨连新, 周娟, 王余龙, 朱建国. 开放式空气CO2浓度增高和施氮量对水稻结实期叶片内肽酶活力的影响. 中国水稻科学, 2008, 22: 155–160

Hu J, Yang L X, Zhou J, Wang Y L, Zhu J G. Effect of free air CO2 enrichment (FACE) and nitrogen level on endopeptidase activities in rice leaves during grain filling stage. Chin J Rice Sci, 2008, 22: 155–160 (in Chinese with English abstract)

[25]王贺正, 马均, 李旭毅, 李艳, 张荣萍, 汪仁全. 水分胁迫对水稻结实期一些生理性状的影响. 作物学报, 2006, 32: 1892–1897

Wang H Z, Ma J, Li X Y, Li Y, Zhang R P, Wang R Q. Effects of water stress on some physiological characteristics in rice during grain filling stage. Acta Agron Sin, 2006, 32: 1892–1897 (in Chinese with English abstract)

[26]彭长连, 林植芳, 林桂珠. 加富CO2条件下水稻叶片抗氧化能力的变化. 作物学报, 1999, 25: 39–43

Peng C L, Lin Z F, Lin G Z. Changes of antioxidative ability in leaves of rice cultivars grown under enriched CO2. Acta Agron Sin, 1999, 25: 39–43 (in Chinese with English abstract)

[27]彭晓邦, 张硕新. 大气CO2浓度升高对植物某些生理过程影响的研究进展. 西北林学院学报, 2006, 21(1): 68–71

Peng X B, Zhang S X. Research progress in effects of increased atmospheric CO2 concentration on certain physiological process of plants. J Northwest For Univ, 2006, 21(1): 68–71 (in Chinese with English abstract)

[28]刘少华, 陈国祥, 胡艳, 吕川根, 吴国荣, 杨艳华. 高产杂交稻“两优培九”功能叶抗氧化系统对水分胁迫的响应. 作物学报, 2004, 30: 1244–1249

Liu S H, Chen G X, Hu Y, Lü C G, Wu G R, Yang Y H. Effects of water stress on the antioxidant system in mature leaves of hybrid rice “Liangyoupeijiu”. Acta Agron Sin, 2004, 30: 1244–1249 (in Chinese with English abstract)

[29]Kimball1 B A, 朱建国, 程磊, Kobayashi K, Bindi M. 开放系统中农作物对空气CO2浓度增加的响应. 应用生态学报, 2002, 13: 1323–1338

Kimball B A, Zhu J G, Cheng L, Kobayashi K, Bindi M. Responses of agricultural crops to free air CO2 enrichment. Chin J Appl Ecol, 2002, 13: 1323–1338 (in Chinese with English abstract)

[30]Kim H Y, Lieffering M, Kobayashi K, Okada M, Miura S. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biol, 2003, 9: 826–837

[31]黄建晔, 董桂春, 杨洪建, 王余龙, 朱建国, 杨连新, 单玉华. 开放式空气CO2 增高对水稻物质生产与分配的影响. 应用生态学报, 2003, 14: 253–257

Huang J Y, Dong G C, Yang H J, Wang Y L, Zhu J G, Yang L X, Shan Y H. Effects of free-air CO2 enrichment on biomass accumulation and distribution in rice. Chin J Appl Ecol, 2003, 14: 253–257 (in Chinese with English abstract)

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!